找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 1990Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 存貨清單
31#
發(fā)表于 2025-3-26 20:58:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:24:44 | 只看該作者
Commonly Used Regional Exposureeriodic solutions. That is to say, we looked for the conditions under which nonautonomous, .-periodic differential equations give rise to subharmonic solutions when the Floquet exponents at criticality lie in the set of rational points (.. = .,. ≤.1) or, equivalently, when the Floquet multipliers at
34#
發(fā)表于 2025-3-27 10:25:01 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:23 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:59 | 只看該作者
Litigating the Rights of the ChildWe turn now to the analysis of steady bifurcating solutions of the two-dimensional autonomous problem (IV.I).
37#
發(fā)表于 2025-3-28 01:36:15 | 只看該作者
https://doi.org/10.1007/978-3-319-01872-0We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
38#
發(fā)表于 2025-3-28 04:35:22 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:07 | 只看該作者
Methods of Projection for General Problems of Bifurcation into Steady Solutions,We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼勒克县| 贵阳市| 饶河县| 新和县| 顺义区| 澄迈县| 五家渠市| 尼勒克县| 灵川县| 莱西市| 临湘市| 安徽省| 东丰县| 句容市| 祁东县| 闽侯县| SHOW| 年辖:市辖区| 和政县| 汝城县| 黄骅市| 青神县| 桦川县| 洛隆县| 张家港市| 托克托县| 克拉玛依市| 扶风县| 永顺县| 滦南县| 滁州市| 册亨县| 曲阳县| 桓仁| 绍兴市| 大新县| 天峻县| 泗阳县| 余江县| 宜州市| 夏河县|