找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:30:27 | 只看該作者
22#
發(fā)表于 2025-3-25 10:53:01 | 只看該作者
Quasisymmetric RigidityIn addition to the real bounds, another important preliminary step towards establishing the . of multicritical circle maps (to be examined in Sect. .) is to answer the question: When are two topologically conjugate multicritical circle maps . conjugate? This question pertains to the general study of . of one-dimensional systems.
23#
發(fā)表于 2025-3-25 15:37:13 | 只看該作者
Ergodic AspectsIn this chapter we examine multicritical circle maps from the point of view of measurable dynamics. We have seen in Theorem . that every homeomorphism of the circle without periodic points is uniquely ergodic. In particular, every multicritical circle map . with irrational rotation number is uniquely ergodic.
24#
發(fā)表于 2025-3-25 17:11:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:15:59 | 只看該作者
Quasiconformal DeformationsThis chapter should be regarded as a second intermezzo (after Chap. .). Here we briefly review some standard facts about the theory of quasiconformal mappings in the complex plane and the Riemann sphere. In such a short exposition we can hardly do justice to this beautiful and powerful theory.
27#
發(fā)表于 2025-3-26 05:15:45 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:27 | 只看該作者
Renormalization: Holomorphic MethodsIn this final chapter we will survey some of the complex-analytic ideas that play a decisive role in the theory of (multi)critical circle maps.
29#
發(fā)表于 2025-3-26 14:49:47 | 只看該作者
30#
發(fā)表于 2025-3-26 17:39:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵溪市| 綦江县| 安泽县| 米泉市| 甘德县| 大同市| 禄丰县| 怀柔区| 唐海县| 乐东| 榆林市| 大同市| 漠河县| 桐乡市| 额尔古纳市| 郯城县| 陆丰市| 常山县| 宣武区| 湘潭市| 高阳县| 巴青县| 周口市| 伽师县| 宁德市| 昌黎县| 新沂市| 石阡县| 满洲里市| 碌曲县| 保定市| 乐清市| 鹤山市| 南部县| 南和县| 山丹县| 紫云| 怀柔区| 山丹县| 海口市| 阳东县|