找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
查看: 41434|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:55:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dynamics of Circle Mappings
編輯Edson de Faria,Pablo Guarino
視頻videohttp://file.papertrans.cn/285/284851/284851.mp4
概述Explores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
叢書(shū)名稱(chēng)IMPA Monographs
圖書(shū)封面Titlebook: Dynamics of Circle Mappings;  Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und
描述.This book explores recent developments in the dynamics of invertible circle maps, a rich and captivating topic in one-dimensional dynamics. It focuses on two main classes of invertible dynamical systems on the circle: global diffeomorphisms and smooth homeomorphisms with critical points. The latter is the book‘s core, reflecting the authors‘ recent research interests..Organized into four parts and 14 chapters, the content covers rigid rotations, circle homeomorphisms, and the concept of rotation number in the first part. The second part delves into circle diffeomorphisms, presenting classical results. The third part introduces multicritical circle maps—smooth homeomorphisms of the circle with a finite number of critical points. The fourth and final part centers on renormalization theory, analyzing the fine geometric structure of orbits of multicritical circle maps. Complete proofs for several fundamental results in circle dynamics are provided throughout. The book concludes with a list of open questions..Primarily intended for graduate students and young researchers in dynamical systems, this book is also suitable for mathematicians from other fields with an interest in the subjec
出版日期Textbook 2024Latest edition
關(guān)鍵詞dynamical systems; one-dimensional systems; one-dimensonal dynamics; invertible circle maps; invertible
版次2
doihttps://doi.org/10.1007/978-3-031-67495-2
isbn_softcover978-3-031-67497-6
isbn_ebook978-3-031-67495-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Dynamics of Circle Mappings影響因子(影響力)




書(shū)目名稱(chēng)Dynamics of Circle Mappings影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dynamics of Circle Mappings網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dynamics of Circle Mappings網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dynamics of Circle Mappings被引頻次




書(shū)目名稱(chēng)Dynamics of Circle Mappings被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dynamics of Circle Mappings年度引用




書(shū)目名稱(chēng)Dynamics of Circle Mappings年度引用學(xué)科排名




書(shū)目名稱(chēng)Dynamics of Circle Mappings讀者反饋




書(shū)目名稱(chēng)Dynamics of Circle Mappings讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:43 | 只看該作者
Smooth Conjugacies to Rotationstion. In other words, the . orbit structure of such a diffeomorphism is indistinguishable from that of a rigid rotation. The relative order of points of a given orbit on the circle is the same no matter which orbit we take; everything is determined by a single invariant, the rotation number.
地板
發(fā)表于 2025-3-22 05:04:31 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:29 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:31 | 只看該作者
Exponential Convergence: The Smooth Caseanswer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
9#
發(fā)表于 2025-3-23 01:53:09 | 只看該作者
We will study the orbit structure of orientation-preserving homeomorphisms of the unit circle. As is customary, we will identify the boundary of the unit disk . with the one-dimensional torus ..
10#
發(fā)表于 2025-3-23 09:35:30 | 只看該作者
Tingting Zhang,Lijun Xie,Xianzheng ZengThis chapter is to be regarded as an intermezzo. We want to move on to the study of homeomorphisms of the circle having one or more critical points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定安县| 明星| 武强县| 固安县| 林周县| 泽普县| 霞浦县| 南澳县| 庆云县| 湖北省| 内乡县| 浦县| 三穗县| 乌兰浩特市| 武夷山市| 罗定市| 兴义市| 石林| 遂宁市| 色达县| 合川市| 桂东县| 东至县| 饶河县| 邯郸县| 射洪县| 河间市| 昌图县| 六盘水市| 佛山市| 台东县| 台山市| 五峰| 集贤县| 全南县| 新乡县| 合江县| 鄂托克旗| 卢氏县| 庆云县| 汉寿县|