找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:30:27 | 只看該作者
22#
發(fā)表于 2025-3-25 10:53:01 | 只看該作者
Quasisymmetric RigidityIn addition to the real bounds, another important preliminary step towards establishing the . of multicritical circle maps (to be examined in Sect. .) is to answer the question: When are two topologically conjugate multicritical circle maps . conjugate? This question pertains to the general study of . of one-dimensional systems.
23#
發(fā)表于 2025-3-25 15:37:13 | 只看該作者
Ergodic AspectsIn this chapter we examine multicritical circle maps from the point of view of measurable dynamics. We have seen in Theorem . that every homeomorphism of the circle without periodic points is uniquely ergodic. In particular, every multicritical circle map . with irrational rotation number is uniquely ergodic.
24#
發(fā)表于 2025-3-25 17:11:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:15:59 | 只看該作者
Quasiconformal DeformationsThis chapter should be regarded as a second intermezzo (after Chap. .). Here we briefly review some standard facts about the theory of quasiconformal mappings in the complex plane and the Riemann sphere. In such a short exposition we can hardly do justice to this beautiful and powerful theory.
27#
發(fā)表于 2025-3-26 05:15:45 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:27 | 只看該作者
Renormalization: Holomorphic MethodsIn this final chapter we will survey some of the complex-analytic ideas that play a decisive role in the theory of (multi)critical circle maps.
29#
發(fā)表于 2025-3-26 14:49:47 | 只看該作者
30#
發(fā)表于 2025-3-26 17:39:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯门区| 阆中市| 武隆县| 于田县| 丹寨县| 科尔| 广宁县| 五家渠市| 成都市| 洛宁县| 石狮市| 光山县| 灵璧县| 北京市| 玉山县| 扎兰屯市| 棋牌| 双柏县| 汶上县| 山阴县| 金昌市| 清丰县| 崇文区| 大洼县| 修文县| 浑源县| 新乡市| 东城区| 台州市| 清镇市| 黔东| 金山区| 荔波县| 观塘区| 龙南县| 汉源县| 阿尔山市| 闽清县| 江津市| 乌鲁木齐市| 黄平县|