找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
查看: 41432|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:55:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamics of Circle Mappings
編輯Edson de Faria,Pablo Guarino
視頻videohttp://file.papertrans.cn/285/284851/284851.mp4
概述Explores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
叢書名稱IMPA Monographs
圖書封面Titlebook: Dynamics of Circle Mappings;  Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und
描述.This book explores recent developments in the dynamics of invertible circle maps, a rich and captivating topic in one-dimensional dynamics. It focuses on two main classes of invertible dynamical systems on the circle: global diffeomorphisms and smooth homeomorphisms with critical points. The latter is the book‘s core, reflecting the authors‘ recent research interests..Organized into four parts and 14 chapters, the content covers rigid rotations, circle homeomorphisms, and the concept of rotation number in the first part. The second part delves into circle diffeomorphisms, presenting classical results. The third part introduces multicritical circle maps—smooth homeomorphisms of the circle with a finite number of critical points. The fourth and final part centers on renormalization theory, analyzing the fine geometric structure of orbits of multicritical circle maps. Complete proofs for several fundamental results in circle dynamics are provided throughout. The book concludes with a list of open questions..Primarily intended for graduate students and young researchers in dynamical systems, this book is also suitable for mathematicians from other fields with an interest in the subjec
出版日期Textbook 2024Latest edition
關(guān)鍵詞dynamical systems; one-dimensional systems; one-dimensonal dynamics; invertible circle maps; invertible
版次2
doihttps://doi.org/10.1007/978-3-031-67495-2
isbn_softcover978-3-031-67497-6
isbn_ebook978-3-031-67495-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Dynamics of Circle Mappings影響因子(影響力)




書目名稱Dynamics of Circle Mappings影響因子(影響力)學(xué)科排名




書目名稱Dynamics of Circle Mappings網(wǎng)絡(luò)公開度




書目名稱Dynamics of Circle Mappings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics of Circle Mappings被引頻次




書目名稱Dynamics of Circle Mappings被引頻次學(xué)科排名




書目名稱Dynamics of Circle Mappings年度引用




書目名稱Dynamics of Circle Mappings年度引用學(xué)科排名




書目名稱Dynamics of Circle Mappings讀者反饋




書目名稱Dynamics of Circle Mappings讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:43 | 只看該作者
Smooth Conjugacies to Rotationstion. In other words, the . orbit structure of such a diffeomorphism is indistinguishable from that of a rigid rotation. The relative order of points of a given orbit on the circle is the same no matter which orbit we take; everything is determined by a single invariant, the rotation number.
地板
發(fā)表于 2025-3-22 05:04:31 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:29 | 只看該作者
7#
發(fā)表于 2025-3-22 18:40:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:31 | 只看該作者
Exponential Convergence: The Smooth Caseanswer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
9#
發(fā)表于 2025-3-23 01:53:09 | 只看該作者
We will study the orbit structure of orientation-preserving homeomorphisms of the unit circle. As is customary, we will identify the boundary of the unit disk . with the one-dimensional torus ..
10#
發(fā)表于 2025-3-23 09:35:30 | 只看該作者
Tingting Zhang,Lijun Xie,Xianzheng ZengThis chapter is to be regarded as an intermezzo. We want to move on to the study of homeomorphisms of the circle having one or more critical points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
光山县| 湟源县| 叶城县| 包头市| 株洲县| 威信县| 永康市| 客服| 平罗县| 南平市| 田东县| 咸阳市| 临沭县| 松潘县| 泽普县| 施甸县| 桃园市| 陇南市| 扶风县| 寿宁县| 当涂县| 巴里| 龙门县| 即墨市| 莲花县| 太仆寺旗| 承德市| 基隆市| 宜春市| 家居| 荆门市| 武义县| 衡阳市| 玛纳斯县| 武鸣县| 理塘县| 奇台县| 大连市| 海盐县| 吉安市| 汶上县|