找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: vein220
11#
發(fā)表于 2025-3-23 10:40:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:47:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:23:55 | 只看該作者
The phase space of dynamical systems under consideration, i.e., the interval ., is endowed with Lebesgue measure. It is thus useful to establish some properties of dynamical systems that are typical with respect to this measure, i.e., properties exhibited by trajectories covering sets of full measure.
15#
發(fā)表于 2025-3-24 05:45:16 | 只看該作者
Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
16#
發(fā)表于 2025-3-24 08:57:54 | 只看該作者
Elements of Symbolic Dynamics,Symbolic dynamics is a part of the general theory of dynamical systems dealing with cascades generated by shifts in various spaces of sequences . where θ. are letters of an alphabet . = {θ., θ., ..., θ.} The methods of symbolic dynamics are now widely applied to the investigation of various types of dynamical systems.
17#
發(fā)表于 2025-3-24 14:22:08 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:16 | 只看該作者
Local Stability of Invariant Sets. Structural Stability of Unimodal Maps,Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
20#
發(fā)表于 2025-3-24 23:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平舆县| 壤塘县| 吉水县| 江西省| 隆尧县| 老河口市| 遵义县| 东城区| 海原县| 扶沟县| 上思县| 长汀县| 项城市| 宁阳县| 新昌县| 壶关县| 镇原县| 新建县| 盈江县| 榆林市| 长葛市| 长岭县| 静乐县| 海丰县| 赤城县| 临桂县| 阿巴嘎旗| 中牟县| 台北市| 泰兴市| 横峰县| 贡觉县| 辛集市| 武宁县| 色达县| 六盘水市| 华坪县| 永顺县| 大悟县| 岳阳县| 衡南县|