找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: vein220
21#
發(fā)表于 2025-3-25 07:20:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:29:50 | 只看該作者
Coexistence of Periodic Trajectories,xplained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, and information on the mutual location of these points often enables one to apply the methods of symbolic dynamics. These ideas are especially useful for the investigation of periodic trajectories.
23#
發(fā)表于 2025-3-25 14:46:59 | 只看該作者
cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
24#
發(fā)表于 2025-3-25 17:54:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:37 | 只看該作者
Topological Dynamics of Unimodal Maps,cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
26#
發(fā)表于 2025-3-26 03:40:43 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:20 | 只看該作者
Book 1997arious topological aspects of the dynamics of unimodal maps are studied in Chap- ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of e
28#
發(fā)表于 2025-3-26 10:28:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:25 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通榆县| 宁德市| 桓台县| 美姑县| 都安| 义乌市| 株洲市| 平南县| 新乐市| 宁海县| 儋州市| 大悟县| 宜宾县| 法库县| 洮南市| 扬州市| 龙泉市| 金沙县| 聂荣县| 舞钢市| 全椒县| 英吉沙县| 门头沟区| 宣恩县| 洞头县| 华宁县| 上思县| 安顺市| 新龙县| 建瓯市| 陇西县| 怀来县| 县级市| 巨野县| 德昌县| 遂溪县| 镇坪县| 双鸭山市| 电白县| 京山县| 元阳县|