找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: vein220
21#
發(fā)表于 2025-3-25 07:20:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:29:50 | 只看該作者
Coexistence of Periodic Trajectories,xplained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, and information on the mutual location of these points often enables one to apply the methods of symbolic dynamics. These ideas are especially useful for the investigation of periodic trajectories.
23#
發(fā)表于 2025-3-25 14:46:59 | 只看該作者
cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
24#
發(fā)表于 2025-3-25 17:54:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:37 | 只看該作者
Topological Dynamics of Unimodal Maps,cause .(.) ? .). The set .. contains an element maximal by inclusion. Indeed, let .. = { .., .., ..., ..} and ... = { .., .., ..., ..} be cycles of intervals from ... We say that .. is bounded from above by the cycle of intervals .. if .. ? .. for all . ∈ { 0, 1, ..., .-1}.
26#
發(fā)表于 2025-3-26 03:40:43 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:20 | 只看該作者
Book 1997arious topological aspects of the dynamics of unimodal maps are studied in Chap- ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of e
28#
發(fā)表于 2025-3-26 10:28:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:25 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦安县| 无极县| 隆尧县| 娄底市| 镇巴县| 吉水县| 安庆市| 华坪县| 株洲市| 龙井市| 蓝田县| 靖宇县| 宁明县| 阿拉善左旗| 益阳市| 额敏县| 兰西县| 新乡市| 泾川县| 肇州县| 香格里拉县| 山丹县| 吴江市| 昭通市| 凯里市| 彰化市| 堆龙德庆县| 临洮县| 尖扎县| 海城市| 牡丹江市| 商水县| 湖北省| 龙川县| 灵武市| 通州市| 江华| 环江| 夏河县| 拉萨市| 浮梁县|