找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
查看: 47621|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:02:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamics of One-Dimensional Maps
編輯A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko
視頻videohttp://file.papertrans.cn/285/284146/284146.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Dynamics of One-Dimensional Maps;  A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997
描述maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe- 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap- ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap- ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and p
出版日期Book 1997
關(guān)鍵詞DEX; Invariant; Volume; behavior; boundary element method; dynamical systems; eXist; nonlinear dynamics; onl
版次1
doihttps://doi.org/10.1007/978-94-015-8897-3
isbn_softcover978-90-481-4846-2
isbn_ebook978-94-015-8897-3
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書目名稱Dynamics of One-Dimensional Maps影響因子(影響力)




書目名稱Dynamics of One-Dimensional Maps影響因子(影響力)學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps網(wǎng)絡(luò)公開度




書目名稱Dynamics of One-Dimensional Maps網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps被引頻次




書目名稱Dynamics of One-Dimensional Maps被引頻次學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps年度引用




書目名稱Dynamics of One-Dimensional Maps年度引用學(xué)科排名




書目名稱Dynamics of One-Dimensional Maps讀者反饋




書目名稱Dynamics of One-Dimensional Maps讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:23:49 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/e/image/284146.jpg
地板
發(fā)表于 2025-3-22 05:47:41 | 只看該作者
https://doi.org/10.1007/978-94-015-8897-3DEX; Invariant; Volume; behavior; boundary element method; dynamical systems; eXist; nonlinear dynamics; onl
5#
發(fā)表于 2025-3-22 08:52:56 | 只看該作者
978-90-481-4846-2Springer Science+Business Media Dordrecht 1997
6#
發(fā)表于 2025-3-22 16:04:15 | 只看該作者
Fundamental Concepts of the Theory of Dynamical Systems. Typical Examples and Some Results, or metric). If . belongs to ? or ?., then a dynamical system is sometimes called a flow and if . belongs to ? or ?., then this dynamical system is called a cascade. These names are connected with the fact that, under the action of .., the points of . “begin to move” ..., and the space “splits” into the trajectories of this motion.
7#
發(fā)表于 2025-3-22 17:49:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:09:00 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:27 | 只看該作者
Pamela J. Stewart,Andrew J. Strathernive location of points of a single trajectory on the interval . may contain much information about the dynamical system as a whole. Clearly, this is explained by the fact that the phase space (the interval .) is onedimensional. The points of a trajectory define a decomposition of the phase space, an
10#
發(fā)表于 2025-3-23 07:09:11 | 只看該作者
d . if the interiors of .. are mutually disjoint and .(..) ? .. for all . ∈{0, 1, ..., .- 1}. Denote by .., = ..(.) the set of cycles of intervals of period . of the map . which contain the critical point .. Suppose that, for some .≥ 1, the set ..(.) is not empty (it is clear that .. is not empty be
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 武隆县| 天等县| 舞钢市| 安宁市| 依安县| 巧家县| 博白县| 澜沧| 大石桥市| 武胜县| 义马市| 乌拉特前旗| 汨罗市| 石台县| 杂多县| 许昌市| 河北省| 疏附县| 淳安县| 普宁市| 澎湖县| 昌图县| 嘉祥县| 南汇区| 云安县| 仁化县| 西畴县| 巴彦淖尔市| 清丰县| 衡南县| 澄江县| 太保市| 苏尼特右旗| 平遥县| 财经| 探索| 色达县| 团风县| 凤凰县| 广汉市|