找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Phase Transitions in Chaotic Systems; Edson Denis Leonel Book 2023 Higher Education Press Limited Company 2023 Scaling laws in n

[復(fù)制鏈接]
樓主: 變更
41#
發(fā)表于 2025-3-28 18:06:00 | 只看該作者
Carola Pantenburg,Gerhard Peter. The exponent, ., is obtained using a connection with the standard mapping in a transition from local to globally chaotic dynamics, where invariant spanning curves are destroyed. The exponent . is obtained by transforming the equation of differences into a differential equation, allowing a prompt s
42#
發(fā)表于 2025-3-28 21:39:11 | 只看該作者
Marktversagen und Gefangenen-Dilemma,pecific time in the phase space. It is fundamental to investigate the chaotic diffusion along the phase space. We impose particular boundary conditions and concentrate all the particles leaving from an initial action and resolve analytically the probability density that provides the probability a pa
43#
發(fā)表于 2025-3-29 01:16:19 | 只看該作者
44#
發(fā)表于 2025-3-29 06:43:42 | 只看該作者
Marktversagen und Gefangenen-Dilemma,amics and has two control parameters. One controls the intensity of the nonlinearity, while the other controls the dissipation. The parameter responsible for the transition is the dissipation, while the parameter driving the nonlinearity gives the elementary excitation of the dynamics. An order para
45#
發(fā)表于 2025-3-29 10:54:19 | 只看該作者
Wundballistik der Kurzwaffengeschosse,s of the mapping that describe the particles’ dynamics, considering that the particle’s velocity is given by the application of the momentum conservation law at each impact with the moving boundary. The unlimited diffusion is measured in the average speed of the particle leading to a phenomenon call
46#
發(fā)表于 2025-3-29 14:26:15 | 只看該作者
Wundballistik der Kurzwaffengeschosse,s of the particles with the boundary of the billiard. Two scaling laws emerge from a set of three scaling hypotheses. A scaling invariance is observed, giving pieces of evidence of a phase transition in the system.
47#
發(fā)表于 2025-3-29 19:32:55 | 只看該作者
Wismut,ynamics of each particle in the billiard is made using a four-dimensional mapping with two relevant control parameters. One controls the intensity of the nonlinearity, and the other controls the amount of dissipation. An order parameter is identified with a parameter responsible for the transition a
48#
發(fā)表于 2025-3-29 22:10:13 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 02:39:35 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高唐县| 九江县| 台东县| 湟源县| 博白县| 吴忠市| 台安县| 剑阁县| 礼泉县| 拉孜县| 双桥区| 普陀区| 长治市| 仲巴县| 桦甸市| 德阳市| 大安市| 浪卡子县| 德化县| 白河县| 宜州市| 东海县| 元阳县| 西乌珠穆沁旗| 上犹县| 元朗区| 义乌市| 鄂州市| 银川市| 南汇区| 璧山县| 汝州市| 巩留县| 兰西县| 海宁市| 井冈山市| 耒阳市| 宁安市| 沈阳市| 元氏县| 晋江市|