找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Phase Transitions in Chaotic Systems; Edson Denis Leonel Book 2023 Higher Education Press Limited Company 2023 Scaling laws in n

[復制鏈接]
查看: 39728|回復: 48
樓主
發(fā)表于 2025-3-21 20:10:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dynamical Phase Transitions in Chaotic Systems
編輯Edson Denis Leonel
視頻videohttp://file.papertrans.cn/284/283839/283839.mp4
概述Discusses scaling investigation in nonlinear dynamics.Details suppression of Fermi acceleration in time-dependent billiards.Presents transition from integrability to non-integrability and limited to u
叢書名稱Nonlinear Physical Science
圖書封面Titlebook: Dynamical Phase Transitions in Chaotic Systems;  Edson Denis Leonel Book 2023 Higher Education Press Limited Company 2023 Scaling laws in n
描述This book discusses some scaling properties and characterizes two-phase transitions for chaotic dynamics in nonlinear systems described by mappings. The chaotic dynamics is determined by the unpredictability of the time evolution of two very close initial conditions in the phase space. It yields in an exponential divergence from each other as time passes. The chaotic diffusion is investigated, leading to a scaling invariance, a characteristic of a continuous phase transition. Two different types of transitions are considered in the book. One of them considers a transition from integrability to non-integrability observed in a two-dimensional, nonlinear, and area-preserving mapping, hence a conservative dynamics, in the variables action and angle. The other transition considers too the dynamics given by the use of nonlinear mappings and describes a suppression of the unlimited chaotic diffusion for a dissipative standard mapping and an equivalent transition in the suppression of Fermi acceleration in time-dependent billiards.. . This book allows the readers to understand some of the applicability of scaling theory to phase transitions and other critical dynamics commonly observed in
出版日期Book 2023
關鍵詞Scaling laws in nonlinear systems; Phase transition from limited to unlimited diffusion; Transition fr
版次1
doihttps://doi.org/10.1007/978-981-99-2244-4
isbn_softcover978-981-99-2246-8
isbn_ebook978-981-99-2244-4Series ISSN 1867-8440 Series E-ISSN 1867-8459
issn_series 1867-8440
copyrightHigher Education Press Limited Company 2023
The information of publication is updating

書目名稱Dynamical Phase Transitions in Chaotic Systems影響因子(影響力)




書目名稱Dynamical Phase Transitions in Chaotic Systems影響因子(影響力)學科排名




書目名稱Dynamical Phase Transitions in Chaotic Systems網(wǎng)絡公開度




書目名稱Dynamical Phase Transitions in Chaotic Systems網(wǎng)絡公開度學科排名




書目名稱Dynamical Phase Transitions in Chaotic Systems被引頻次




書目名稱Dynamical Phase Transitions in Chaotic Systems被引頻次學科排名




書目名稱Dynamical Phase Transitions in Chaotic Systems年度引用




書目名稱Dynamical Phase Transitions in Chaotic Systems年度引用學科排名




書目名稱Dynamical Phase Transitions in Chaotic Systems讀者反饋




書目名稱Dynamical Phase Transitions in Chaotic Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:56:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:38:44 | 只看該作者
A Solution of the Diffusion Equation,s and concentrate all the particles leaving from an initial action and resolve analytically the probability density that provides the probability a particle can be observed with action . at any time .. The knowledge of the probability density furnishes all the relevant observables, including the scaling invariance of the chaotic diffusion.
地板
發(fā)表于 2025-3-22 06:20:21 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:24 | 只看該作者
6#
發(fā)表于 2025-3-22 16:38:06 | 只看該作者
Marktversagen und Gefangenen-Dilemma,meter is identified and goes continuously to zero at the transition. Moreover, its susceptibility diverges at the same limit. These elements give evidence the transition is characterized as a continuous phase transition.
7#
發(fā)表于 2025-3-22 20:37:45 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:55 | 只看該作者
Carola Pantenburg,Gerhard Peterpanning curves are destroyed. The exponent . is obtained by transforming the equation of differences into a differential equation, allowing a prompt solution. The critical exponent . is obtained by using the scaling law.
9#
發(fā)表于 2025-3-23 02:25:37 | 只看該作者
10#
發(fā)表于 2025-3-23 07:23:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善左旗| 翁源县| 乌兰察布市| 凌海市| 万盛区| 合水县| 获嘉县| 香港| 正镶白旗| 南昌市| 宁河县| 聊城市| 中方县| 正宁县| 龙陵县| 阳朔县| 尉犁县| 呼和浩特市| 双辽市| 昭通市| 安塞县| 江安县| 虹口区| 油尖旺区| 闽侯县| 旅游| 容城县| 桓台县| 浦东新区| 方正县| 裕民县| 惠东县| 社旗县| 池州市| 长白| 东台市| 罗田县| 通渭县| 山东| 巴林右旗| 鄱阳县|