找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Phase Transitions in Chaotic Systems; Edson Denis Leonel Book 2023 Higher Education Press Limited Company 2023 Scaling laws in n

[復(fù)制鏈接]
樓主: 變更
11#
發(fā)表于 2025-3-23 12:56:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:39:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:35:35 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:44 | 只看該作者
1867-8440 f Fermi acceleration in time-dependent billiards.. . This book allows the readers to understand some of the applicability of scaling theory to phase transitions and other critical dynamics commonly observed in 978-981-99-2246-8978-981-99-2244-4Series ISSN 1867-8440 Series E-ISSN 1867-8459
15#
發(fā)表于 2025-3-24 02:59:06 | 只看該作者
A Hamiltonian and a Mapping,choices made with the functions lead to describing different systems. Imposing the determinant of the Jacobian matrix equal to unity leads to area preservation. Chaotic diffusion is considered via different techniques leading to a scaling invariance.
16#
發(fā)表于 2025-3-24 06:53:53 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:23 | 只看該作者
18#
發(fā)表于 2025-3-24 15:12:20 | 只看該作者
Characterization of a Continuous Phase Transition in an Area-Preserving Map,r, and area-preserving mapping. A parameter . controls the transition and is closely related to the order parameter. The average squared action along the chaotic sea presents a scaling invariance concerning the control parameter. This property is a characteristic of a continuous phase transition. Th
19#
發(fā)表于 2025-3-24 23:00:13 | 只看該作者
Characterization of a Transition from Limited to Unlimited Diffusion,amics and has two control parameters. One controls the intensity of the nonlinearity, while the other controls the dissipation. The parameter responsible for the transition is the dissipation, while the parameter driving the nonlinearity gives the elementary excitation of the dynamics. An order para
20#
發(fā)表于 2025-3-25 02:56:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡| 略阳县| 弋阳县| 象州县| 杭州市| 水城县| 渑池县| 白朗县| 安陆市| 仁怀市| 巢湖市| 合川市| 常德市| 灵武市| 柯坪县| 礼泉县| 苍梧县| 繁峙县| 大冶市| 岑溪市| 开阳县| 左云县| 织金县| 石柱| 新津县| 陇川县| 忻州市| 大足县| 肥东县| 汝城县| 广州市| 玉门市| 荔浦县| 锦州市| 青川县| 桦甸市| 江华| 平顶山市| 镇沅| 景泰县| 城固县|