找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research; Chao Shang Book 2018 Springer Nature Singa

[復(fù)制鏈接]
樓主: Flippant
31#
發(fā)表于 2025-3-26 21:24:59 | 只看該作者
32#
發(fā)表于 2025-3-27 03:09:34 | 只看該作者
33#
發(fā)表于 2025-3-27 05:33:46 | 只看該作者
34#
發(fā)表于 2025-3-27 13:08:32 | 只看該作者
Enhanced Dynamic PLS with Temporal Smoothness for Soft Sensing,ng process dynamics appropriately. Hence, a series of limitations in practice are incurred, such as sensitivity to temporal noises and inadequate descriptions to process dynamics. Because of these concerns, static models have been extended to dynamic counterparts such dynamic partial least squares (
35#
發(fā)表于 2025-3-27 15:35:38 | 只看該作者
Nonlinear Dynamic Soft Sensing Based on Bayesian Inference,e whole model has a Wiener structure, in which nonlinearity and dynamics are described separately. In addition, a novel four-level Bayesian framework is developed to probabilistically illustrate and iteratively optimize the proposed model, which helps alleviating the over-fitting phenomenon automati
36#
發(fā)表于 2025-3-27 18:53:47 | 只看該作者
37#
發(fā)表于 2025-3-27 23:17:53 | 只看該作者
2190-5053 zing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industr978-981-13-3889-2978-981-10-6677-1Series ISSN 2190-5053 Series E-ISSN 2190-5061
38#
發(fā)表于 2025-3-28 02:32:16 | 只看該作者
Enhanced Dynamic PLS with Temporal Smoothness for Soft Sensing,which is used as a valid prior knowledge. In this manner, abrupt changes in model dynamics are properly penalized and the DPLS-based soft sensors enjoy better generalizations and interpretations. A numerical example and the Tennessee Eastman process case study are provided to show the feasibility as
39#
發(fā)表于 2025-3-28 08:52:16 | 只看該作者
40#
發(fā)表于 2025-3-28 12:36:41 | 只看該作者
Rohstoffwirtschaftliche Entwicklungshilfewhich is used as a valid prior knowledge. In this manner, abrupt changes in model dynamics are properly penalized and the DPLS-based soft sensors enjoy better generalizations and interpretations. A numerical example and the Tennessee Eastman process case study are provided to show the feasibility as
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌江| 尉犁县| 正安县| 怀来县| 上饶县| 乾安县| 且末县| 泽州县| 开远市| 三明市| 青神县| 英吉沙县| 竹山县| 余姚市| 新平| 临安市| 文成县| 阳山县| 江西省| 南皮县| 罗田县| 铁岭市| 宜丰县| 广宁县| 措美县| 五原县| 杨浦区| 长汀县| 武城县| 白玉县| 工布江达县| 孝感市| 普定县| 郸城县| 舒兰市| 黔南| 观塘区| 温宿县| 拉萨市| 伊吾县| 武定县|