找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research; Chao Shang Book 2018 Springer Nature Singa

[復(fù)制鏈接]
查看: 37988|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:05:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research
編輯Chao Shang
視頻videohttp://file.papertrans.cn/284/283657/283657.mp4
概述Nominated as an outstanding PhD thesis by Tsinghua University.Develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle.Proposes an e
叢書名稱Springer Theses
圖書封面Titlebook: Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research;  Chao Shang Book 2018 Springer Nature Singa
描述.This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts..The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industr
出版日期Book 2018
關(guān)鍵詞Industrial Process Control; Data-driven Methods; Process Data Analytics; Process Monitoring; Fault Diagn
版次1
doihttps://doi.org/10.1007/978-981-10-6677-1
isbn_softcover978-981-13-3889-2
isbn_ebook978-981-10-6677-1Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research影響因子(影響力)




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research影響因子(影響力)學(xué)科排名




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research網(wǎng)絡(luò)公開度




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research被引頻次




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research被引頻次學(xué)科排名




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research年度引用




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research年度引用學(xué)科排名




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research讀者反饋




書目名稱Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:41:26 | 只看該作者
Chao ShangNominated as an outstanding PhD thesis by Tsinghua University.Develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle.Proposes an e
地板
發(fā)表于 2025-3-22 06:50:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:11:48 | 只看該作者
Rohstoffwirtschaftliche EntwicklungshilfeThis chapter summarizes the whole work of this thesis, and some challenges on data-driven modeling methodologies and industrial applications are pointed out as the future work.
6#
發(fā)表于 2025-3-22 15:07:13 | 只看該作者
Conclusions and Recommendations,This chapter summarizes the whole work of this thesis, and some challenges on data-driven modeling methodologies and industrial applications are pointed out as the future work.
7#
發(fā)表于 2025-3-22 20:11:34 | 只看該作者
8#
發(fā)表于 2025-3-23 00:11:09 | 只看該作者
Problemstellung und Zielsetzung,ondition is detected, an alarm is triggered based on classical monitoring methods. Consequently, they cannot distinguish real faults incurring dynamics anomalies from normal deviations in operating conditions. In this chapter, a new process monitoring strategy based on slow feature analysis (SFA) is
9#
發(fā)表于 2025-3-23 02:34:44 | 只看該作者
O. Frankl,K. Kaufmann,O. Schult?-Braunsdynamics described by SFA essentially is related to control performance. Then we propose a new data-driven control performance monitoring approach based on SFA. In addition, by employing the contribution plot techniques, we further develop a new control performance diagnosis method to locate potenti
10#
發(fā)表于 2025-3-23 08:05:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
申扎县| 安岳县| 石城县| 禹城市| 玛纳斯县| 公安县| 高雄市| 珠海市| 通江县| 鄱阳县| 嘉祥县| 乐安县| 嵊州市| 贡山| 荔波县| 郯城县| 潼南县| 沾化县| 榕江县| 鱼台县| 达日县| 宜昌市| 石屏县| 高阳县| 称多县| 灵丘县| 岳西县| 江达县| 托里县| 梨树县| 武义县| 泰顺县| 汉川市| 齐河县| 宜阳县| 宿迁市| 鹤岗市| 嘉定区| 东光县| 容城县| 毕节市|