找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research; Chao Shang Book 2018 Springer Nature Singa

[復(fù)制鏈接]
樓主: Flippant
21#
發(fā)表于 2025-3-25 04:29:32 | 只看該作者
Monitoring of Operating Condition and Process Dynamics with Slow Feature Analysis,, two novel indices are proposed to detect anomalies in process dynamics through the slowness of LVs. The proposed approach can distinguish whether normal changes in operating conditions or real faults occur. Two case studies show the validity of the SFA-based process monitoring approach.
22#
發(fā)表于 2025-3-25 10:07:26 | 只看該作者
Recursive SFA Algorithm and Adaptive Monitoring System Design, statistics related to process dynamics, which provides an intelligent maintenance mechanism of monitoring systems. The efficacy of the proposed schema is finally evaluated on a industrial crude heating furnace system.
23#
發(fā)表于 2025-3-25 13:25:18 | 只看該作者
Introduction,ensor modeling is given. Third, the opportunities and challenges in advancing industrial applications of process data analytics are highlighted. Finally, the main contents and the layout of this thesis are provided.
24#
發(fā)表于 2025-3-25 19:00:04 | 只看該作者
Rohstoffwirtschaftliche Entwicklungshilfecally. Case studies based on a numerical example and an industrial application in propylene melt index prediction are presented to demonstrate the advantages of the proposed method over classic dynamic soft sensing models.
25#
發(fā)表于 2025-3-25 23:05:03 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:07 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:50 | 只看該作者
28#
發(fā)表于 2025-3-26 09:21:51 | 只看該作者
Probabilistic Slow Feature Regression for Dynamic Soft Sensing,on performance of soft sensors when used as inputs. An efficient expectation maximization algorithm is proposed to estimate parameters of the PSFA model, and two alternative criteria are put forward to select quality-relevant SFs in the PSFR model. The validity and advantages of the proposed method are demonstrated via two case studies.
29#
發(fā)表于 2025-3-26 14:50:50 | 只看該作者
Introduction,agnosis in industrial processes is introduced. Then an extensive review of existing research on multivariate statistical process monitoring and soft sensor modeling is given. Third, the opportunities and challenges in advancing industrial applications of process data analytics are highlighted. Final
30#
發(fā)表于 2025-3-26 20:10:28 | 只看該作者
Monitoring of Operating Condition and Process Dynamics with Slow Feature Analysis,ondition is detected, an alarm is triggered based on classical monitoring methods. Consequently, they cannot distinguish real faults incurring dynamics anomalies from normal deviations in operating conditions. In this chapter, a new process monitoring strategy based on slow feature analysis (SFA) is
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新密市| 深州市| 呼伦贝尔市| 德令哈市| 枝江市| 屏边| 宜良县| 阿图什市| 普安县| 安化县| 长岛县| 米林县| 东方市| 无锡市| 五峰| 百色市| 乾安县| 麻栗坡县| 固始县| 彭水| 安吉县| 湟中县| 中方县| 富蕴县| 苍南县| 疏勒县| 诸暨市| 石狮市| 蓬溪县| 廊坊市| 利辛县| 三亚市| 团风县| 田林县| 阳谷县| 石狮市| 霸州市| 温泉县| 丁青县| 大方县| 和平县|