找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[復(fù)制鏈接]
樓主: GOLF
51#
發(fā)表于 2025-3-30 10:44:32 | 只看該作者
,Compositional Representation Learning for?Brain Tumour Segmentation, presence or absence of the tumour (or the tumour sub-regions) in the image are constructed. Then, vMFNet models the encoded image features with von-Mises-Fisher (vMF) distributions, via learnable and compositional vMF kernels which capture information about structures in the images. We show that go
52#
發(fā)表于 2025-3-30 13:45:01 | 只看該作者
,Realistic Data Enrichment for?Robust Image Segmentation in?Histopathology,egmentation of imbalanced objects within images. Therefore, we propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups by conditioning on segmentation maps. Our method can simply expand limited clinical datasets m
53#
發(fā)表于 2025-3-30 18:14:02 | 只看該作者
54#
發(fā)表于 2025-3-30 22:11:32 | 只看該作者
55#
發(fā)表于 2025-3-31 02:48:17 | 只看該作者
56#
發(fā)表于 2025-3-31 08:20:24 | 只看該作者
,SEDA: Self-ensembling ViT with?Defensive Distillation and?Adversarial Training for?Robust Chest X-Refensive distillation for improved robustness against adversaries. Training using adversarial examples leads to better model generalizability and improves its ability to handle perturbations. Distillation using soft probabilities introduces uncertainty and variation into the output probabilities, ma
57#
發(fā)表于 2025-3-31 09:59:28 | 只看該作者
58#
發(fā)表于 2025-3-31 15:45:03 | 只看該作者
,Self-prompting Large Vision Models for?Few-Shot Medical Image Segmentation,s decoder, and leveraging its interactive promptability, we achieve competitive results on multiple datasets (i.e. improvement of more than 15% compared to fine-tuning the mask decoder using a few images). Our code is available at?
59#
發(fā)表于 2025-3-31 19:47:00 | 只看該作者
60#
發(fā)表于 2025-4-1 00:36:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 定日县| 义马市| 辽中县| 龙游县| 德惠市| 富顺县| 庆云县| 色达县| 托里县| 收藏| 衢州市| 全椒县| 黑水县| 定日县| 昌邑市| 修水县| 阜平县| 福海县| 宿州市| 平武县| 松溪县| 屏边| 张家界市| 清流县| 黄大仙区| 浦北县| 广德县| 康定县| 黔南| 政和县| 郧西县| 金秀| 佛学| 饶河县| 沁阳市| 定西市| 汾西县| 邵武市| 虹口区| 宜阳县|