找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[復(fù)制鏈接]
查看: 22292|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:27:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Domain Adaptation and Representation Transfer
副標(biāo)題5th MICCAI Workshop,
編輯Lisa Koch,M. Jorge Cardoso,Dong Yang
視頻videohttp://file.papertrans.cn/283/282480/282480.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed
描述This book constitutes the refereed proceedings of the 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023, which was held in conjunction with MICCAI 2023, in October 2023.?.The 16 full papers presented in this book were carefully reviewed and selected from 32 submissions. They discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains..?.
出版日期Conference proceedings 2024
關(guān)鍵詞artificial intelligence; medical imaging; transfer learning; color image processing; domain shift; domain
版次1
doihttps://doi.org/10.1007/978-3-031-45857-6
isbn_softcover978-3-031-45856-9
isbn_ebook978-3-031-45857-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Domain Adaptation and Representation Transfer影響因子(影響力)




書目名稱Domain Adaptation and Representation Transfer影響因子(影響力)學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation and Representation Transfer網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer被引頻次




書目名稱Domain Adaptation and Representation Transfer被引頻次學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer年度引用




書目名稱Domain Adaptation and Representation Transfer年度引用學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer讀者反饋




書目名稱Domain Adaptation and Representation Transfer讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:55 | 只看該作者
https://doi.org/10.1007/978-3-031-13913-0itectures. Such approaches, however, typically ignore domain specific peculiarities and lack the ability to generalize outside their training dataset. We observe that, in RGB images, teeth display a weak or unremarkable texture while exhibiting strong boundaries; similarly, in panoramic radiographs
板凳
發(fā)表于 2025-3-22 01:38:22 | 只看該作者
地板
發(fā)表于 2025-3-22 06:08:00 | 只看該作者
Vladimir I. Trukhachev,Rafkat S. Gaisin to pre-existing labels. The method involves utilizing a self-training approach by generating pseudo-labels of the target domain data. To do so, a strategy that is based on a smooth transition between domains is implemented where we initially feed easy examples to the network and gradually increase
5#
發(fā)表于 2025-3-22 08:49:17 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:15 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:16 | 只看該作者
8#
發(fā)表于 2025-3-22 23:23:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:35:02 | 只看該作者
Public Spaces in ‘Colonized’ Urban Iberiaassing various modalities, sequences, manufacturers and machines. In this study, we propose a semi-supervised domain adaptation (SSDA) framework for automatically detecting poor quality FLAIR MRIs within a clinical data warehouse. Leveraging a limited number of labelled FLAIR and a large number of l
10#
發(fā)表于 2025-3-23 08:55:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 天镇县| 上高县| 肥西县| 屏东县| 策勒县| 铜梁县| 大宁县| 三门峡市| 宾阳县| 平乡县| 临猗县| 延津县| 西宁市| 乌拉特中旗| 渑池县| 永登县| 大英县| 西畴县| 莱西市| 新蔡县| 绥化市| 宝鸡市| 濮阳县| 墨江| 海安县| 高雄县| 江油市| 交口县| 泽普县| 陆河县| 延庆县| 海丰县| 若尔盖县| 新建县| 林芝县| 新竹县| 准格尔旗| 正镶白旗| 德安县| 建宁县|