找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[復(fù)制鏈接]
樓主: GOLF
21#
發(fā)表于 2025-3-25 06:28:29 | 只看該作者
22#
發(fā)表于 2025-3-25 07:44:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:01 | 只看該作者
,Black-Box Unsupervised Domain Adaptation for?Medical Image Segmentation,ng. In general, UDA assumes that information about the source model, such as its architecture and weights, and all samples from the source domains are available when a target domain model is trained. However, this is not a realistic assumption in applications where privacy and white-box attacks are
24#
發(fā)表于 2025-3-25 19:03:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:27 | 只看該作者
26#
發(fā)表于 2025-3-26 03:41:01 | 只看該作者
27#
發(fā)表于 2025-3-26 08:08:19 | 只看該作者
,Realistic Data Enrichment for?Robust Image Segmentation in?Histopathology,ng large-scale WSIs manually is a demanding and time-consuming task, unlikely to yield the expected results when used for fully supervised learning systems. Rarely observed disease patterns and large differences in object scales are difficult to model through conventional patient intake. Prior metho
28#
發(fā)表于 2025-3-26 08:32:21 | 只看該作者
29#
發(fā)表于 2025-3-26 14:48:16 | 只看該作者
,Semi-supervised Domain Adaptation for?Automatic Quality Control of?FLAIR MRIs in?a?Clinical Data Waassing various modalities, sequences, manufacturers and machines. In this study, we propose a semi-supervised domain adaptation (SSDA) framework for automatically detecting poor quality FLAIR MRIs within a clinical data warehouse. Leveraging a limited number of labelled FLAIR and a large number of l
30#
發(fā)表于 2025-3-26 17:29:51 | 只看該作者
,Towards Foundation Models Learned from?Anatomy in?Medical Imaging via?Self-supervision,s: (1) .: each anatomical structure is morphologically distinct from the others; and (2) .: each anatomical structure is an integrated part of a larger whole. We envision a foundation model for medical imaging that is . and . developed upon this foundation to gain the capability of “understanding” h
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽清县| 邯郸县| 江川县| 延边| 双城市| 邢台市| 中江县| 广东省| 柘荣县| 夏河县| 石台县| 甘孜县| 凉城县| 黄石市| 尼勒克县| 大竹县| 巴彦县| 景德镇市| 乌苏市| 遂川县| 临潭县| 手游| 泸定县| 赤峰市| 唐河县| 六枝特区| 论坛| 辽源市| 桦川县| 湘潭市| 惠来县| 宣化县| 庄河市| 连江县| 饶河县| 宝清县| 杂多县| 乌兰县| 团风县| 竹溪县| 莱芜市|