找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
樓主: deteriorate
21#
發(fā)表于 2025-3-25 06:31:05 | 只看該作者
22#
發(fā)表于 2025-3-25 09:53:29 | 只看該作者
Mix-Up Augmentation for Oracle Character Recognition with Imbalanced Data Distributionamework with both the softmax loss and triplet loss on the augmented samples which proves able to improve the classification accuracy further. We conduct extensive evaluations w.r.t. both total class accuracy and average class accuracy on three benchmark datasets (i.e., Oracle-20K, Oracle-AYNU and O
23#
發(fā)表于 2025-3-25 15:15:42 | 只看該作者
https://doi.org/10.1007/978-3-319-89734-9, which is out of scope for other graph-based methods in the literature. We investigate two variants of graph convolutional layers and show that learning improves performances considerably on two popular graph-based word spotting benchmarks.
24#
發(fā)表于 2025-3-25 17:34:51 | 只看該作者
Children in Translocal Familiesgenerating images of promising visual quality, we are able to improve classification performance by augmenting original data with generated samples. Additionally, we demonstrate that our approach is applicable to other domains as well, like digit generation in house number signs.
25#
發(fā)表于 2025-3-25 23:23:14 | 只看該作者
26#
發(fā)表于 2025-3-26 02:19:44 | 只看該作者
Graph Convolutional Neural Networks for Learning Attribute Representations for Word Spotting, which is out of scope for other graph-based methods in the literature. We investigate two variants of graph convolutional layers and show that learning improves performances considerably on two popular graph-based word spotting benchmarks.
27#
發(fā)表于 2025-3-26 07:24:12 | 只看該作者
Context Aware Generation of Cuneiform Signsgenerating images of promising visual quality, we are able to improve classification performance by augmenting original data with generated samples. Additionally, we demonstrate that our approach is applicable to other domains as well, like digit generation in house number signs.
28#
發(fā)表于 2025-3-26 08:56:28 | 只看該作者
Handwritten Text Recognition with Convolutional Prototype Network and Most Aligned Frame Based CTC Tors in decoding. Experiments of handwritten text recognition on four benchmark datasets of different languages show that the proposed method consistently improves the accuracy and alignment of CTC-based text recognition baseline.
29#
發(fā)表于 2025-3-26 16:15:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:20 | 只看該作者
M. Kaltenbach,G. Kober,D. Schererin time if more information is needed. Moreover our system is end-to-end trainable, OLT-C3D and the temporal reject system are jointly trained to optimize the earliness of the decision. Our approach achieves superior performances on two complementary and freely available datasets: ILGDB and MTGSetB.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定边县| 石渠县| 漠河县| 攀枝花市| 锡林郭勒盟| 吕梁市| 临漳县| 乡城县| 县级市| 五家渠市| 湘潭市| 理塘县| 北安市| 芦溪县| 常熟市| 依兰县| 陇川县| 宜良县| 当涂县| 综艺| 获嘉县| 秦安县| 永安市| 板桥市| 宜丰县| 隆子县| 玉环县| 晴隆县| 含山县| 汉中市| 墨江| 余干县| 双流县| 海淀区| 铁岭县| 德化县| 乐平市| 玉林市| 璧山县| 特克斯县| 大丰市|