找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
查看: 56061|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:52:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Document Analysis and Recognition – ICDAR 2021
副標(biāo)題16th International C
編輯Josep Lladós,Daniel Lopresti,Seiichi Uchida
視頻videohttp://file.papertrans.cn/283/282314/282314.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202
描述.This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16.th. International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021.?The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports..The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; character recognition; computational linguistics; computer science; computer sy
版次1
doihttps://doi.org/10.1007/978-3-030-86549-8
isbn_softcover978-3-030-86548-1
isbn_ebook978-3-030-86549-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)




書目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開度




書目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021被引頻次




書目名稱Document Analysis and Recognition – ICDAR 2021被引頻次學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021年度引用




書目名稱Document Analysis and Recognition – ICDAR 2021年度引用學(xué)科排名




書目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋




書目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:38:37 | 只看該作者
Currently Available Systems: METALare generated using an automated multi-directional steerable filters approach. The generated wall masks are then validated and corrected manually. We validate our approach of wall-mask generation in state-of-the-art modern datasets. Finally we propose a U-net based convolutional framework for wall d
地板
發(fā)表于 2025-3-22 06:08:22 | 只看該作者
Children in Translocal Familiess on cTDaR 2019 Archival dataset show that our method can outperform the baselines and achieve new state-of-the-art performance, which demonstrates the effectiveness and superiority of the proposed method.
5#
發(fā)表于 2025-3-22 09:49:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:43 | 只看該作者
The Abject, Murder, and Sex in ,+ntic features are extracted using a . network, which are . fused to make full use of complementary information. Finally, given component candidates, a . based on graph neural network is incorported to model relations between components and output final results. On three popular benchmarks, VSR outpe
7#
發(fā)表于 2025-3-22 18:03:50 | 只看該作者
https://doi.org/10.1007/978-981-10-8609-0d applications. The core . library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout detection, character recognition, and many other document processing tasks. To promote extensibility, . also incorporates a community platform for sharing both pre
8#
發(fā)表于 2025-3-22 23:32:53 | 只看該作者
https://doi.org/10.1007/978-94-007-2315-3ression algorithms can be successfully applied for the task of document image classification. We further analyze the impact of model compression on network outputs and highlight the discrepancy that arises during the compression process. Building on recent findings in this direction, we employ a pri
9#
發(fā)表于 2025-3-23 03:37:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:13:34 | 只看該作者
Translocality in Contemporary City Novelsof the proposed model on the three datasets: IAM Handwriting, Rimes, and TUAT Kondate. The experimental results show that the proposed model achieves similar or better accuracy when compared to state-of-the-art models in all datasets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 新邵县| 开封县| 乳山市| 平顺县| 定西市| 惠州市| 富宁县| 天门市| 广州市| 前郭尔| 霍林郭勒市| 绥化市| 沙坪坝区| 昔阳县| 湖南省| 高碑店市| 永泰县| 无为县| 浙江省| 尉氏县| 肥东县| 讷河市| 南京市| 金寨县| 伽师县| 涪陵区| 辉南县| 虎林市| 临潭县| 新乡县| 兴国县| 巴林左旗| 威海市| 革吉县| 武义县| 榕江县| 如东县| 绥滨县| 海林市| 华安县|