找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
查看: 56072|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:52:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Document Analysis and Recognition – ICDAR 2021
副標(biāo)題16th International C
編輯Josep Lladós,Daniel Lopresti,Seiichi Uchida
視頻videohttp://file.papertrans.cn/283/282314/282314.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202
描述.This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16.th. International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021.?The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports..The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; character recognition; computational linguistics; computer science; computer sy
版次1
doihttps://doi.org/10.1007/978-3-030-86549-8
isbn_softcover978-3-030-86548-1
isbn_ebook978-3-030-86549-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021影響因子(影響力)學(xué)科排名




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021被引頻次




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021被引頻次學(xué)科排名




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021年度引用




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021年度引用學(xué)科排名




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋




書(shū)目名稱Document Analysis and Recognition – ICDAR 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:38:37 | 只看該作者
Currently Available Systems: METALare generated using an automated multi-directional steerable filters approach. The generated wall masks are then validated and corrected manually. We validate our approach of wall-mask generation in state-of-the-art modern datasets. Finally we propose a U-net based convolutional framework for wall d
地板
發(fā)表于 2025-3-22 06:08:22 | 只看該作者
Children in Translocal Familiess on cTDaR 2019 Archival dataset show that our method can outperform the baselines and achieve new state-of-the-art performance, which demonstrates the effectiveness and superiority of the proposed method.
5#
發(fā)表于 2025-3-22 09:49:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:43 | 只看該作者
The Abject, Murder, and Sex in ,+ntic features are extracted using a . network, which are . fused to make full use of complementary information. Finally, given component candidates, a . based on graph neural network is incorported to model relations between components and output final results. On three popular benchmarks, VSR outpe
7#
發(fā)表于 2025-3-22 18:03:50 | 只看該作者
https://doi.org/10.1007/978-981-10-8609-0d applications. The core . library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout detection, character recognition, and many other document processing tasks. To promote extensibility, . also incorporates a community platform for sharing both pre
8#
發(fā)表于 2025-3-22 23:32:53 | 只看該作者
https://doi.org/10.1007/978-94-007-2315-3ression algorithms can be successfully applied for the task of document image classification. We further analyze the impact of model compression on network outputs and highlight the discrepancy that arises during the compression process. Building on recent findings in this direction, we employ a pri
9#
發(fā)表于 2025-3-23 03:37:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:13:34 | 只看該作者
Translocality in Contemporary City Novelsof the proposed model on the three datasets: IAM Handwriting, Rimes, and TUAT Kondate. The experimental results show that the proposed model achieves similar or better accuracy when compared to state-of-the-art models in all datasets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞头县| 惠安县| 华阴市| 若尔盖县| 奉新县| 林西县| 东光县| 民和| 新源县| 塔河县| 儋州市| 英吉沙县| 广昌县| 石台县| 温州市| 镇赉县| 广平县| 澎湖县| 新疆| 洛宁县| 防城港市| 成都市| 松滋市| 玉山县| 灌南县| 宽城| 永嘉县| 峨眉山市| 海林市| 万宁市| 达日县| 简阳市| 伊金霍洛旗| 北京市| 兴山县| 项城市| 雷山县| 攀枝花市| 毕节市| 榆中县| 大化|