找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023

[復(fù)制鏈接]
樓主: Constrict
51#
發(fā)表于 2025-3-30 09:26:55 | 只看該作者
OCR Language Models with?Custom Vocabulariespower of language models in this context is the existence of many specialized domains with language statistics very different from those implied by a general language model - think of checks, medical prescriptions, and many other specialized document classes. This paper introduces an algorithm for e
52#
發(fā)表于 2025-3-30 16:07:45 | 只看該作者
53#
發(fā)表于 2025-3-30 17:02:19 | 只看該作者
54#
發(fā)表于 2025-3-30 22:02:36 | 只看該作者
Linguistic Knowledge Within Handwritten Text Recognition Models: A Real-World Case Studyon layers, which perform recognition over sequences of characters. This architecture may lead to the model learning statistical linguistic features of the training corpus, over and above graphic features. This in turn could lead to degraded performance if the evaluation dataset language differs from
55#
發(fā)表于 2025-3-31 02:54:10 | 只看該作者
56#
發(fā)表于 2025-3-31 08:44:03 | 只看該作者
Faster DAN: Multi-target Queries with?Document Positional Encoding for?End-to-End Handwritten Documecognizes the characters one after the other through an attention-based prediction process until reaching the end of the document. However, this autoregressive process leads to inference that cannot benefit from any parallelization optimization. In this paper, we propose Faster DAN, a two-step strate
57#
發(fā)表于 2025-3-31 11:11:30 | 只看該作者
58#
發(fā)表于 2025-3-31 17:05:03 | 只看該作者
DSS: Synthesizing Long Digital Ink Using Data Augmentation, Style Encoding and?Split Generationy used models for this task fail to generalize to long-form data and how this problem can be solved by augmenting the training data, changing the model architecture and the inference procedure. These methods use contrastive learning technique and are tailored specifically for the handwriting domain.
59#
發(fā)表于 2025-3-31 18:24:16 | 只看該作者
Precise Segmentation for?Children Handwriting Analysis by?Combining Multiple Deep Models with?Onlineigh performance for both tasks is necessary to give personalized feedback to children who are learning how to write. The first contribution is to combine the predictions of an accurate Seq2Seq model with the predictions of a R-CNN object detector. The second one is to refine the bounding box predict
60#
發(fā)表于 2025-3-31 23:04:37 | 只看該作者
Fine-Tuning Vision Encoder–Decoder Transformers for?Handwriting Text Recognition on?Historical Docum area of HTR that has garnered particular interest is the transcription of historical documents, as there is a vast amount of records available that have yet to be processed, potentially resulting in a loss of information due to deterioration..Currently, the most widely used HTR approach is to train
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永年县| 得荣县| 潼关县| 获嘉县| 吐鲁番市| 邛崃市| 华蓥市| 广州市| 金寨县| 青川县| 缙云县| 平阴县| 嵊泗县| 准格尔旗| 汤阴县| 兴隆县| 色达县| 闽侯县| 通化市| 宣武区| 沅江市| 太仆寺旗| 四子王旗| 涟源市| 册亨县| 临澧县| 阿克| 潮州市| 上思县| 阿坝县| 股票| 商丘市| 韩城市| 泽普县| 莆田市| 巴中市| 华池县| 上蔡县| 栾川县| 石棉县| 内黄县|