找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023

[復(fù)制鏈接]
樓主: Constrict
31#
發(fā)表于 2025-3-26 21:37:08 | 只看該作者
https://doi.org/10.1007/978-3-319-50042-3 several publicly available datasets including UPTI, NUST-UHWR, and MMU-OCR-21. We also combined printed and handwriting datasets to train our architecture and propose a single unified model; capable of recognizing both printed and handwritten text for maximum variations of fonts and writing styles with state-of-the-art results.
32#
發(fā)表于 2025-3-27 02:02:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:08 | 只看該作者
34#
發(fā)表于 2025-3-27 09:41:45 | 只看該作者
Improved Learning for?Online Handwritten Chinese Text Recognition with?Convolutional Prototype Netwod loss function for improving non-character resistance, and weakly supervised learning on both character and string samples for improving recognition performance. Experimental results on the CASIA-OLHWDB and ICDAR2013-Online datasets show that the proposed method can achieve promising recognition performance without training data augmentation.
35#
發(fā)表于 2025-3-27 17:04:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:43:00 | 只看該作者
Faster DAN: Multi-target Queries with?Document Positional Encoding for?End-to-End Handwritten Documets compared to standard DAN, while being at least 4 times faster on whole single-page and double-page images of the RIMES 2009, READ 2016 and MAURDOR datasets. Source code and trained model weights are available at ..
37#
發(fā)表于 2025-3-27 23:58:11 | 只看該作者
Shared-Operation Hypercomplex Networks for?Handwritten Text Recognitionarameterization, which grows cubically with respect to the hypercomplex dimension. We attain good word and character error rate at only a small fraction of the memory footprint of non-hypercomplex models as well as previous non-shared operation hypercomplex ones (up to . size reduction).
38#
發(fā)表于 2025-3-28 05:13:56 | 只看該作者
Precise Segmentation for?Children Handwriting Analysis by?Combining Multiple Deep Models with?Onlineions provided by the detector with a segmentation lattice computed from the online signal. An ablation study shows that both contributions are relevant, and their combination is efficient enough for immediate feedback and achieves state of the art results even compared to more informed systems.
39#
發(fā)表于 2025-3-28 07:07:12 | 只看該作者
Pharmaceutical Industry Performancebest use this model the paper also introduces a modified CTC beam search decoder which effectively allows hypotheses to remain in contention based on possible future completion of vocabulary words. The result is a substantial reduction in word error rate in recognizing material from specialized domains.
40#
發(fā)表于 2025-3-28 11:46:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 湖北省| 平和县| 临安市| 六枝特区| 淄博市| 鄂托克前旗| 武穴市| 灌南县| 昌都县| 涞源县| 民县| 洮南市| 梧州市| 泾源县| 武邑县| 绥棱县| 依安县| 汨罗市| 南充市| 开阳县| 乌鲁木齐市| 三门县| 昌乐县| 佳木斯市| 通城县| 东海县| 五台县| 阿勒泰市| 洛南县| 江津市| 鄄城县| 乌拉特前旗| 龙游县| 卢湾区| 合江县| 多伦县| 金昌市| 青田县| 衡阳县| 黄浦区|