找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2023; 17th International C Gernot A. Fink,Rajiv Jain,Richard Zanibbi Conference proceedings 2023

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 10:17:32 | 只看該作者
Pharmaceutical Industry Performanceon, spelling correction, and beautification. Writing is personal and usually the processing is done on-device. Ink generative models thus need to produce high quality content quickly, in a resource constrained environment..In this work, we study ways to maximize the quality of the output of a traine
12#
發(fā)表于 2025-3-23 17:22:25 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:48 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:19 | 只看該作者
Translating Samuel Beckett into Hindicognizes the characters one after the other through an attention-based prediction process until reaching the end of the document. However, this autoregressive process leads to inference that cannot benefit from any parallelization optimization. In this paper, we propose Faster DAN, a two-step strate
15#
發(fā)表于 2025-3-24 02:25:52 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:37 | 只看該作者
Case Study I: Key Concepts and Approachy used models for this task fail to generalize to long-form data and how this problem can be solved by augmenting the training data, changing the model architecture and the inference procedure. These methods use contrastive learning technique and are tailored specifically for the handwriting domain.
17#
發(fā)表于 2025-3-24 11:06:59 | 只看該作者
18#
發(fā)表于 2025-3-24 16:59:14 | 只看該作者
https://doi.org/10.1007/978-3-030-52527-9 area of HTR that has garnered particular interest is the transcription of historical documents, as there is a vast amount of records available that have yet to be processed, potentially resulting in a loss of information due to deterioration..Currently, the most widely used HTR approach is to train
19#
發(fā)表于 2025-3-24 22:22:02 | 只看該作者
Critical Approaches to Children‘s Literatureethods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple fine-tuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very smal
20#
發(fā)表于 2025-3-25 01:47:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤山市| 济南市| 漯河市| 任丘市| 枣强县| 寿宁县| 应城市| 高邑县| 蓝田县| 通海县| 天长市| 兴义市| 吉木乃县| 湘乡市| 孟连| 建阳市| 乳山市| 明星| 奎屯市| 逊克县| 若尔盖县| 新建县| 长泰县| 梓潼县| 新宾| 阿合奇县| 青川县| 衡东县| 肇源县| 大石桥市| 确山县| 九寨沟县| 建宁县| 柳河县| 交城县| 大兴区| 涟水县| 大同县| 靖州| 苍溪县| 平顺县|