找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[復(fù)制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 06:14:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:13:04 | 只看該作者
Discriminative Learning: A Unified objective Function,HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
23#
發(fā)表于 2025-3-25 14:39:03 | 只看該作者
Discriminative Learning Algorithm for Exponential-Family Distributions,design where each class is characterized by an exponential-family distribution discussed in Chapter 1. The next chapter extends the results here into the more difficult but practically more useful case of hidden Markov models (HMMs).
24#
發(fā)表于 2025-3-25 17:03:56 | 只看該作者
25#
發(fā)表于 2025-3-25 20:18:27 | 只看該作者
26#
發(fā)表于 2025-3-26 03:17:26 | 只看該作者
1932-121X ech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (M
27#
發(fā)表于 2025-3-26 04:26:13 | 只看該作者
CSR, Sustainability, Ethics & Governancey, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminative training gives superior performance over the conventional maximum likelihood (ML)-based training method.
28#
發(fā)表于 2025-3-26 12:03:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:19 | 只看該作者
Book 2008ition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minim
30#
發(fā)表于 2025-3-26 18:39:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 22:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钟山县| 潢川县| 桃源县| 通化市| 龙川县| 江都市| 宾川县| 肥城市| 道孚县| 扎兰屯市| 高邮市| 武宁县| 石狮市| 县级市| 山东| 江华| 大港区| 灌阳县| 五莲县| 连南| 仙桃市| 宣化县| 岳阳县| 洛浦县| 巴林左旗| 耒阳市| 和林格尔县| 白朗县| 宁阳县| 长葛市| 永平县| 印江| 玛沁县| 承德县| 连山| 边坝县| 宣恩县| 怀宁县| 漯河市| 肇州县| 锡林浩特市|