找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[復制鏈接]
查看: 9727|回復: 37
樓主
發(fā)表于 2025-3-21 19:25:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Discriminative Learning for Speech Recognition
副標題Theory and Practice
編輯Xiaodong He,Li Deng
視頻videohttp://file.papertrans.cn/282/281227/281227.mp4
叢書名稱Synthesis Lectures on Speech and Audio Processing
圖書封面Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008
描述In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum–Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-3-031-02557-0
isbn_softcover978-3-031-01429-1
isbn_ebook978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
issn_series 1932-121X
copyrightSpringer Nature Switzerland AG 2008
The information of publication is updating

書目名稱Discriminative Learning for Speech Recognition影響因子(影響力)




書目名稱Discriminative Learning for Speech Recognition影響因子(影響力)學科排名




書目名稱Discriminative Learning for Speech Recognition網(wǎng)絡公開度




書目名稱Discriminative Learning for Speech Recognition網(wǎng)絡公開度學科排名




書目名稱Discriminative Learning for Speech Recognition被引頻次




書目名稱Discriminative Learning for Speech Recognition被引頻次學科排名




書目名稱Discriminative Learning for Speech Recognition年度引用




書目名稱Discriminative Learning for Speech Recognition年度引用學科排名




書目名稱Discriminative Learning for Speech Recognition讀者反饋




書目名稱Discriminative Learning for Speech Recognition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:33:40 | 只看該作者
1932-121X continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative978-3-031-01429-1978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
板凳
發(fā)表于 2025-3-22 03:09:27 | 只看該作者
Statistical Speech Recognition: A Tutorial,ing tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
地板
發(fā)表于 2025-3-22 08:09:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:53:41 | 只看該作者
6#
發(fā)表于 2025-3-22 15:35:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:46 | 只看該作者
Selected Experimental Results, minimum classification error (MCE) training method on both small-vocabulary, well-controlled benchmark tests such as TIDIGITS, and on large-vocabulary, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminati
8#
發(fā)表于 2025-3-23 00:11:32 | 只看該作者
978-3-031-01429-1Springer Nature Switzerland AG 2008
9#
發(fā)表于 2025-3-23 04:28:34 | 只看該作者
Sustainable Design for Global Equilibriuming tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
10#
發(fā)表于 2025-3-23 06:52:43 | 只看該作者
https://doi.org/10.1007/978-3-030-94818-4HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扎囊县| 茂名市| 绍兴市| 合阳县| 小金县| 西和县| 锦州市| 凤山县| 忻城县| 克拉玛依市| 仙桃市| 鱼台县| 新乡市| 新绛县| 藁城市| 永安市| 峨山| 安阳市| 万山特区| 高青县| 丰原市| 西林县| 澎湖县| 武平县| 津南区| 滕州市| 长沙市| 赫章县| 壶关县| 泰顺县| 华蓥市| 永登县| 根河市| 东海县| 军事| 临潭县| 甘谷县| 延安市| 定结县| 民乐县| 清远市|