找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[復(fù)制鏈接]
查看: 9732|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:25:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Discriminative Learning for Speech Recognition
副標(biāo)題Theory and Practice
編輯Xiaodong He,Li Deng
視頻videohttp://file.papertrans.cn/282/281227/281227.mp4
叢書(shū)名稱Synthesis Lectures on Speech and Audio Processing
圖書(shū)封面Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008
描述In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum–Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-3-031-02557-0
isbn_softcover978-3-031-01429-1
isbn_ebook978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
issn_series 1932-121X
copyrightSpringer Nature Switzerland AG 2008
The information of publication is updating

書(shū)目名稱Discriminative Learning for Speech Recognition影響因子(影響力)




書(shū)目名稱Discriminative Learning for Speech Recognition影響因子(影響力)學(xué)科排名




書(shū)目名稱Discriminative Learning for Speech Recognition網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Discriminative Learning for Speech Recognition網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Discriminative Learning for Speech Recognition被引頻次




書(shū)目名稱Discriminative Learning for Speech Recognition被引頻次學(xué)科排名




書(shū)目名稱Discriminative Learning for Speech Recognition年度引用




書(shū)目名稱Discriminative Learning for Speech Recognition年度引用學(xué)科排名




書(shū)目名稱Discriminative Learning for Speech Recognition讀者反饋




書(shū)目名稱Discriminative Learning for Speech Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:40 | 只看該作者
1932-121X continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative978-3-031-01429-1978-3-031-02557-0Series ISSN 1932-121X Series E-ISSN 1932-1678
板凳
發(fā)表于 2025-3-22 03:09:27 | 只看該作者
Statistical Speech Recognition: A Tutorial,ing tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
地板
發(fā)表于 2025-3-22 08:09:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:53:41 | 只看該作者
6#
發(fā)表于 2025-3-22 15:35:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:46 | 只看該作者
Selected Experimental Results, minimum classification error (MCE) training method on both small-vocabulary, well-controlled benchmark tests such as TIDIGITS, and on large-vocabulary, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminati
8#
發(fā)表于 2025-3-23 00:11:32 | 只看該作者
978-3-031-01429-1Springer Nature Switzerland AG 2008
9#
發(fā)表于 2025-3-23 04:28:34 | 只看該作者
Sustainable Design for Global Equilibriuming tool for characterizing acoustic features in speech. The purpose of this chapter is to set up the context in which HMM parameter learning and discriminative learning in particular, will be introduced.
10#
發(fā)表于 2025-3-23 06:52:43 | 只看該作者
https://doi.org/10.1007/978-3-030-94818-4HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 安陆市| 长春市| 南丹县| 沙河市| 桦川县| 始兴县| 丰台区| 贡山| 雷山县| 大城县| 沅陵县| 韶关市| 纳雍县| 禄劝| 博客| 新河县| 读书| 天祝| 仁寿县| 兴业县| 随州市| 自贡市| 禹城市| 浙江省| 黑龙江省| 临颍县| 光泽县| 巴林左旗| 碌曲县| 嘉禾县| 沭阳县| 田东县| 视频| 洪湖市| 旬阳县| 黄骅市| 来凤县| 县级市| 苏尼特左旗| 青神县|