找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
51#
發(fā)表于 2025-3-30 09:06:52 | 只看該作者
52#
發(fā)表于 2025-3-30 12:42:33 | 只看該作者
53#
發(fā)表于 2025-3-30 19:19:39 | 只看該作者
54#
發(fā)表于 2025-3-30 23:57:08 | 只看該作者
55#
發(fā)表于 2025-3-31 02:15:34 | 只看該作者
Structured Illumination Microscopyx geometry. We will see in this framework that the question v ∈ .? generalizes the problem of recognition of the finite parts of digital hyperplanes and we will give equivalent formulations which allow to solve it efficiently.
56#
發(fā)表于 2025-3-31 05:04:52 | 只看該作者
57#
發(fā)表于 2025-3-31 12:33:59 | 只看該作者
A Question of Digital Linear Algebrax geometry. We will see in this framework that the question v ∈ .? generalizes the problem of recognition of the finite parts of digital hyperplanes and we will give equivalent formulations which allow to solve it efficiently.
58#
發(fā)表于 2025-3-31 16:18:49 | 只看該作者
Strong Thinning and Polyhedrization of the Surface of a Voxel Objectlgorithm to polyhedrize the boundary of a voxel object which uses the parallel thinning algorithm presented above. This method is speci.cally adapted to digital objects and is much more e.cient than such existing methods [.]. Some examples are shown, and a method to make the reverse operation (discretization) is briefly presented.
59#
發(fā)表于 2025-3-31 18:17:05 | 只看該作者
60#
發(fā)表于 2025-4-1 00:04:13 | 只看該作者
Digital ,-Pseudomanifold and n-Weakmanifold in a Binary (, + 1)-Digital Image the n-digital image, based on cubical complex decomposition. This enables us to translate some results from polyhedral topology into the digital space. Our main result extends the class of “thin” objects that are defined locally and verifies the Jordan-Brouwer separation theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝清县| 三亚市| 怀化市| 读书| 阳原县| 怀来县| 绥宁县| 牡丹江市| 云龙县| 青田县| 延川县| 嘉定区| 唐河县| 兴义市| 卓资县| 金川县| 滦南县| 峡江县| 禄丰县| 白水县| 江华| 信丰县| 常德市| 新郑市| 淮安市| 军事| 哈密市| 东城区| 肃北| 彰化县| 昌黎县| 昭觉县| 枝江市| 怀集县| 鹤山市| 阳城县| 吐鲁番市| 临夏县| 隆回县| 新竹市| 阜阳市|