找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
51#
發(fā)表于 2025-3-30 09:06:52 | 只看該作者
52#
發(fā)表于 2025-3-30 12:42:33 | 只看該作者
53#
發(fā)表于 2025-3-30 19:19:39 | 只看該作者
54#
發(fā)表于 2025-3-30 23:57:08 | 只看該作者
55#
發(fā)表于 2025-3-31 02:15:34 | 只看該作者
Structured Illumination Microscopyx geometry. We will see in this framework that the question v ∈ .? generalizes the problem of recognition of the finite parts of digital hyperplanes and we will give equivalent formulations which allow to solve it efficiently.
56#
發(fā)表于 2025-3-31 05:04:52 | 只看該作者
57#
發(fā)表于 2025-3-31 12:33:59 | 只看該作者
A Question of Digital Linear Algebrax geometry. We will see in this framework that the question v ∈ .? generalizes the problem of recognition of the finite parts of digital hyperplanes and we will give equivalent formulations which allow to solve it efficiently.
58#
發(fā)表于 2025-3-31 16:18:49 | 只看該作者
Strong Thinning and Polyhedrization of the Surface of a Voxel Objectlgorithm to polyhedrize the boundary of a voxel object which uses the parallel thinning algorithm presented above. This method is speci.cally adapted to digital objects and is much more e.cient than such existing methods [.]. Some examples are shown, and a method to make the reverse operation (discretization) is briefly presented.
59#
發(fā)表于 2025-3-31 18:17:05 | 只看該作者
60#
發(fā)表于 2025-4-1 00:04:13 | 只看該作者
Digital ,-Pseudomanifold and n-Weakmanifold in a Binary (, + 1)-Digital Image the n-digital image, based on cubical complex decomposition. This enables us to translate some results from polyhedral topology into the digital space. Our main result extends the class of “thin” objects that are defined locally and verifies the Jordan-Brouwer separation theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 肇源县| 左贡县| 策勒县| 平凉市| 孝感市| 忻城县| 扬州市| 阜平县| 平利县| 道真| 砀山县| 涪陵区| 简阳市| 汽车| 海阳市| 汉阴县| 宜阳县| 丹凤县| 佛冈县| 渝中区| 凌源市| 许昌市| 通州区| 曲周县| 遂平县| 体育| 临湘市| 句容市| 壤塘县| 大庆市| 广宗县| 杭州市| 韩城市| 固原市| 滦南县| 昌黎县| 罗山县| 九江县| 邯郸市| 嘉善县|