找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 05:02:25 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:49 | 只看該作者
Structured Illumination Microscopyrs, is solved by the Gauss pivot. The problem investigated in this paper is very close to this classical question: we denote . the function of ?. defined by . and the question is now to determine if a given vector v ∈ ?. belongs to .. This problem can be easily seen as a sytem of inequalities and so
23#
發(fā)表于 2025-3-25 15:01:34 | 只看該作者
https://doi.org/10.1007/978-3-030-21691-7 when some known absorption is supposed. It is math-ematically interesting when the absorbed projection of a matrix element is the same as the absorbed projection of the next two consecutive el-ements together. We show that, in this special case, the non-uniquely determined matrices contain a certai
24#
發(fā)表于 2025-3-25 18:48:36 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:54 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:53 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:43 | 只看該作者
Matthew Ballard,Charles Doran,Eric Sharpeble for classi.cation or compression purposes. Theoretical approaches based on di.erential topology and geometry have been used for surface coding, for example Morse theory and Reeb graphs. To use these approaches in discrete geometry, it is necessary to adapt concepts developed for smooth manifolds
28#
發(fā)表于 2025-3-26 12:10:51 | 只看該作者
Type II Superstrings in Four Dimensionsundary can be retrieved by digitizing the smoothed one. To this end, we propose a representation of the boundary of a discrete volume that we call Euclidean net and which is a generalization to the three-dimensional space of Euclidean Path introduced by Braquelaire and Vialard [.]. Euclidean nets ca
29#
發(fā)表于 2025-3-26 15:56:34 | 只看該作者
30#
發(fā)表于 2025-3-26 18:52:13 | 只看該作者
Peter G. O. Freund,K. T. Mahanthappanning algorithm. The surface of an object composed of voxels is a seto f surfels (faces of voxels) which is the boundary between this object and its complementary. But this representation is not the classical one to visualize and to work on 3D objects, in frameworks like Computer Assisted Geometric
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呈贡县| 宣汉县| 离岛区| 白河县| 西贡区| 敖汉旗| 伊吾县| 蒙山县| 六安市| 苍山县| 彰化县| 东光县| 贺州市| 东丰县| 九江市| 乌鲁木齐县| 嘉禾县| 平湖市| 娄底市| 五指山市| 巴彦淖尔市| 文水县| 新丰县| 澄城县| 阿拉善右旗| 江北区| 星座| 乳源| 盈江县| 木里| 昌平区| 河津市| 蒙城县| 郑州市| 博爱县| 大竹县| 平远县| 临澧县| 阿勒泰市| 民乐县| 疏勒县|