找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 9th International Co Gunilla Borgefors,Ingela Nystr?m,Gabriella Sanniti Conference proceedings 2000

[復(fù)制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 12:54:58 | 只看該作者
12#
發(fā)表于 2025-3-23 17:33:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:44:03 | 只看該作者
https://doi.org/10.1007/978-3-031-39719-6e a new approach in the framework of orders. We introduce the tesselation by connection, which is a transformation that preserves the connectivity, andcan be implemented by a parallel algorithm. We prove that this transformation possesses goodg eometrical properties. The extension of this transforma
14#
發(fā)表于 2025-3-24 01:55:10 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 09:30:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:27 | 只看該作者
Soichi Omori,Tetsuya Komabayashid as finite cell complexes. The paper contains definitions and a theorem necessary to transfer some basic knowledge of the classical topology to finite topological spaces. The method is based on subdividing the given set into blocks of simple cells in such a way, that a .-dimensional block be homeom
18#
發(fā)表于 2025-3-24 17:24:51 | 只看該作者
Superplumes: Beyond Plate Tectonicsproximity space. It is this notion, together with “nearness preserving mappings”, that we investigate in this paper. We first review basic examples as they naturally occur in digital topologies, making also brief comparison studies with other concepts in digital geometry. After this we characterize
19#
發(fā)表于 2025-3-24 19:18:14 | 只看該作者
Soichi Omori,Tetsuya Komabayashientrate on structuring elements in the formo f discrete line segments, including periodic lines. We investigate fast algorithms, decomposition/cascade schemes, and translation invariance issues. Several application examples are provided.
20#
發(fā)表于 2025-3-25 02:42:56 | 只看該作者
Britain and Britishness at the Crossroads, we give some decidable and undecidable properties concerning Hausdorff discretizations of algebraic sets and we prove that some Hausdorff discretizations of algebraic sets are diophantine sets. We refine the last results for algebraic curves and more precisely for straight lines.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安泽县| 高密市| 陆川县| 浪卡子县| 涿州市| 思茅市| 梨树县| 且末县| 汝州市| 嘉义市| 滁州市| 乐安县| 神农架林区| 新邵县| 西华县| 吴川市| 城口县| 湖北省| 永丰县| 修水县| 霍邱县| 土默特右旗| 自贡市| 长垣县| 来凤县| 桦南县| 深州市| 商洛市| 榕江县| 洪江市| 长春市| 祥云县| 万宁市| 方正县| 旬阳县| 尚志市| 卫辉市| 昭平县| 宁城县| 上林县| 安阳县|