找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
31#
發(fā)表于 2025-3-26 21:58:46 | 只看該作者
Jens Kleinert,Isabel Hamm,Marion Sulprizioes intrinsic to computational mathematics based on notions of approximation and convergence. In contrast, for example, to the physical and engineering ideas of Monte Carlo simulation, the direct approaches (besides the obvious physical analogies) appeal originally to clear mathematical images. Howev
32#
發(fā)表于 2025-3-27 04:11:22 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8tion in the collision operators [.–.]. Note, that the other discrete velocity approaches with constant coefficients in the quadratic form approximating the right-hand side of the Boltzmann equation are developed in recent years [.–.]. Such numerical schemes are attractive due to the simple structure
33#
發(fā)表于 2025-3-27 05:47:31 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8) being extended to a discrete level. The concept of conservativity has long been abandoned in computational mathematics (see, for example, [.,.]). Evident advantages of such kind schemes have been verified in wide practical experience.
34#
發(fā)表于 2025-3-27 11:17:00 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8-dimensional problems. And although the use and analysis of parallel algorithms in the dynamics of rarefied gases was initiated only in the last few years, our description of state of art in this field will be out of date as soon as it is published. Nevertheless, we can note the main features of sch
35#
發(fā)表于 2025-3-27 15:13:50 | 只看該作者
36#
發(fā)表于 2025-3-27 18:43:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:47 | 只看該作者
38#
發(fā)表于 2025-3-28 02:14:26 | 只看該作者
39#
發(fā)表于 2025-3-28 08:39:32 | 只看該作者
40#
發(fā)表于 2025-3-28 12:14:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神农架林区| 茂名市| 额敏县| 措勤县| 桑日县| 吉木乃县| 双桥区| 宜良县| 射洪县| 兴文县| 新野县| 确山县| 定陶县| 汕头市| 邛崃市| 原阳县| 长乐市| 无为县| 大名县| 西乌珠穆沁旗| 台东县| 香格里拉县| 中西区| 资中县| 广平县| 济南市| 石泉县| 大丰市| 德昌县| 九龙城区| 阜新市| 铜川市| 宁武县| 遂溪县| 兴业县| 张北县| 鹤庆县| 祁连县| 朝阳区| 镇江市| 盐城市|