找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
21#
發(fā)表于 2025-3-25 07:04:58 | 只看該作者
22#
發(fā)表于 2025-3-25 09:36:04 | 只看該作者
23#
發(fā)表于 2025-3-25 12:27:51 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:22 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8roblems? The practical possibilities lay in the use of simulation methods. However, construction of the conservative methods and application of new computers allowed acceptable solutions to be obtained with the use of coarse grids in different complex problems.
25#
發(fā)表于 2025-3-25 20:50:53 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8very attractive in the view of recent attention to the complicated behaviour of structures in open systems. One of the possible interesting processes can be observed in unstable flows (maybe with chaotic features).
26#
發(fā)表于 2025-3-26 01:37:05 | 只看該作者
Fluid Mechanics and Its Applicationshttp://image.papertrans.cn/e/image/280617.jpg
27#
發(fā)表于 2025-3-26 04:50:46 | 只看該作者
28#
發(fā)表于 2025-3-26 10:09:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:07 | 只看該作者
Grundlagen des Energiestoffwechselsae of the kinetic apparatus. Questions concerning the frameworks of the validity of this equation are not discussed. Neither do we consider the interesting problems of derivation of the kinetic equation nor its connection with the Liouville equation. Minimum information will be presented about the b
30#
發(fā)表于 2025-3-26 20:50:20 | 只看該作者
Sportpsychiatrie und -psychotherapieical approaches (including analytical and numerical methods) in this area. Nevertheless, there are some reviews and some chapters of books concerning this aspect. We can cite only a few works on these theme (see [.–.]). Some of these survey papers were presented to conferences and symposia.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广饶县| 潞城市| 溧水县| 甘肃省| 和静县| 台南县| 昔阳县| 故城县| 神池县| 昭苏县| 翁牛特旗| 祁阳县| 固原市| 加查县| 滁州市| 长海县| 玉树县| 铜山县| 太康县| 隆林| 当雄县| 吕梁市| 来安县| 阜南县| 徐汇区| 新郑市| 高要市| 丹巴县| 深圳市| 会理县| 正阳县| 岳阳县| 清丰县| 广丰县| 岑溪市| 黄浦区| 灵台县| 凉山| 平阴县| 六盘水市| 达孜县|