找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
21#
發(fā)表于 2025-3-25 07:04:58 | 只看該作者
22#
發(fā)表于 2025-3-25 09:36:04 | 只看該作者
23#
發(fā)表于 2025-3-25 12:27:51 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:22 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8roblems? The practical possibilities lay in the use of simulation methods. However, construction of the conservative methods and application of new computers allowed acceptable solutions to be obtained with the use of coarse grids in different complex problems.
25#
發(fā)表于 2025-3-25 20:50:53 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8very attractive in the view of recent attention to the complicated behaviour of structures in open systems. One of the possible interesting processes can be observed in unstable flows (maybe with chaotic features).
26#
發(fā)表于 2025-3-26 01:37:05 | 只看該作者
Fluid Mechanics and Its Applicationshttp://image.papertrans.cn/e/image/280617.jpg
27#
發(fā)表于 2025-3-26 04:50:46 | 只看該作者
28#
發(fā)表于 2025-3-26 10:09:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:07 | 只看該作者
Grundlagen des Energiestoffwechselsae of the kinetic apparatus. Questions concerning the frameworks of the validity of this equation are not discussed. Neither do we consider the interesting problems of derivation of the kinetic equation nor its connection with the Liouville equation. Minimum information will be presented about the b
30#
發(fā)表于 2025-3-26 20:50:20 | 只看該作者
Sportpsychiatrie und -psychotherapieical approaches (including analytical and numerical methods) in this area. Nevertheless, there are some reviews and some chapters of books concerning this aspect. We can cite only a few works on these theme (see [.–.]). Some of these survey papers were presented to conferences and symposia.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邢台市| 武定县| 宝丰县| 浮山县| 呼图壁县| 福贡县| 南平市| 阆中市| 台中县| 天水市| 澎湖县| 永宁县| 黄石市| 化州市| 铜山县| 辽源市| 南开区| 汶川县| 肥城市| 兰溪市| 会宁县| 绥芬河市| 琼海市| 青冈县| 延津县| 大田县| 彭阳县| 安达市| 惠东县| 阜康市| 夏津县| 嘉禾县| 贺兰县| 房山区| 烟台市| 金平| 张家界市| 米林县| 金华市| 如皋市| 青川县|