找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:11:15 | 只看該作者
The Boltzmann Equation as a Physical and Mathematical Model,analytically or numerically) with the Boltzmann equation. The peculiarities of formulation of mathematical problems for the kinetic equation and some types of the boundary conditions are considered. The physical peculiarities of the kinetic Boltzmann equation (in particular, the important property of irreversibility) are also discussed.
12#
發(fā)表于 2025-3-23 17:37:59 | 只看該作者
13#
發(fā)表于 2025-3-23 19:52:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:03:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:14 | 只看該作者
Deterministic (Regular) Method for Solving the Boltzmann Equation,g the right-hand side of the Boltzmann equation are developed in recent years [.–.]. Such numerical schemes are attractive due to the simple structure of terms that approximate the collision integrals, good perspectives for paralleling, a clear way for estimating numerical errors, etc.
17#
發(fā)表于 2025-3-24 12:52:30 | 只看該作者
Parallel Algorithms for the Kinetic Equation,ears, our description of state of art in this field will be out of date as soon as it is published. Nevertheless, we can note the main features of schemes for directly solving the Boltzmann equation which are used for parallel implementation.
18#
發(fā)表于 2025-3-24 15:22:02 | 只看該作者
19#
發(fā)表于 2025-3-24 21:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东源县| 八宿县| 阳信县| 宜宾市| 邻水| 池州市| 漳浦县| 萍乡市| 沙雅县| 博乐市| 平乐县| 肥东县| 西青区| 武山县| 平南县| 扬中市| 安阳市| 固安县| 湟源县| 中山市| 德江县| 昌邑市| 沛县| 霞浦县| 泸溪县| 即墨市| 玛多县| 新竹县| 景谷| 河东区| 木兰县| 红安县| 阜南县| 霸州市| 慈溪市| 罗定市| 甘谷县| 阳江市| 辛集市| 酉阳| 黔东|