找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie; Kurven - Fl?chen - M Wolfgang Kühnel Textbook 20084th edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復制鏈接]
樓主: 有判斷力
31#
發(fā)表于 2025-3-27 00:26:49 | 只看該作者
ntialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und 2-semestrig). Zun?chst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Fl?chen, bevor dann h?herdimensionale Fl?chen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei
32#
發(fā)表于 2025-3-27 03:40:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:54:44 | 只看該作者
34#
發(fā)表于 2025-3-27 10:53:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:25:47 | 只看該作者
36#
發(fā)表于 2025-3-27 18:26:14 | 只看該作者
Simone Cagno,Kevin Hellemans,Koen Janssensst es intuitiv klar, daΒ eine Verzerrung der L?ngen-und Winkelverh?ltnisse auch irgendeinen EinfluΒ auf die Krümmung haben kann. Andererseits ist keineswegs klar, ob und inwieweit die erste Fundamentalform ausreicht, um die Krümmung festzulegen.
37#
發(fā)表于 2025-3-28 01:25:35 | 只看該作者
38#
發(fā)表于 2025-3-28 04:05:06 | 只看該作者
Bezeichnungen sowie Hilfsmittel aus der Analysis,riffen aus der Linearen Algebra verweisen wir auf das Buch von G.Fischer, zu Grundbegriffen der Analysis (einschlieΒlich gew?hnlicher Differentialgleichungen) verweisen wir auf O.Forster, Analysis 1,2, zur Integration und zu Differentialformen auf O.Forster, Analysis 3.
39#
發(fā)表于 2025-3-28 08:44:00 | 只看該作者
,Die innere Geometrie von Fl?chen,st es intuitiv klar, daΒ eine Verzerrung der L?ngen-und Winkelverh?ltnisse auch irgendeinen EinfluΒ auf die Krümmung haben kann. Andererseits ist keineswegs klar, ob und inwieweit die erste Fundamentalform ausreicht, um die Krümmung festzulegen.
40#
發(fā)表于 2025-3-28 13:15:11 | 只看該作者
,Der Krümmungstensor, über Krümmungen Riemannscher Mannigfaltigkeiten dar. Tats?chlich ergeben sich alle skalaren Krümmungsgr?en aus diesem Krümmungstensor. Bevor wir den Krümmungstensor n?her studieren, sprechen wir kurz über Tensoren im allgemeinen.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
于田县| 郧西县| 阳东县| 汕尾市| 固始县| 株洲市| 遵化市| 新兴县| 澳门| 三穗县| 河池市| 句容市| 墨脱县| 武川县| 黎川县| 八宿县| 高阳县| 大石桥市| 阜宁县| 商水县| 雅安市| 洛隆县| 弥勒县| 贡嘎县| 仁怀市| 河北省| 肃南| 手机| 神池县| 五原县| 克东县| 南京市| 乌兰察布市| 北宁市| 虎林市| 高安市| 长丰县| 涞源县| 当阳市| 大丰市| 大庆市|