找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Numerical Analysis; Tiruchirappalli, Ind Valarmathi Sigamani,John J. H. Miller,Franklin Vic Conference proceedin

[復(fù)制鏈接]
樓主: 閘門(mén)
31#
發(fā)表于 2025-3-26 22:11:14 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:22 | 只看該作者
33#
發(fā)表于 2025-3-27 06:05:29 | 只看該作者
Conclusions on Neutron Albedo Decay Sources considered on the interval (0,?2]. The source terms are assumed to have simple discontinuities at the point .. The components of the solution exhibit initial layers and interior layers. The interior layers occuring in the solution are of two types-interior layers due to delay and interior layers d
34#
發(fā)表于 2025-3-27 10:36:53 | 只看該作者
35#
發(fā)表于 2025-3-27 14:25:37 | 只看該作者
Singularly Perturbed Delay Differential Equations and Numerical Methodsatical models represented by differential equations with out delay and with delay are presented. Then some basic numerical methods for delay differential equations are briefly described. After this an introduction to singularly perturbed delay problems is given. Finally some numerical methods for these problems are discussed.
36#
發(fā)表于 2025-3-27 19:54:35 | 只看該作者
37#
發(fā)表于 2025-3-27 22:40:00 | 只看該作者
Stanley E. Order,Sarah S. DonaldsonSingular perturbation problems, by nature, are not easy to handle and they demand efficient techniques to solve and careful analysis. And systems of singular perturbation problems are tougher as their solutions exhibit layers with sub-layers. Their properties are studied and examples are given to illustrate.
38#
發(fā)表于 2025-3-28 02:59:41 | 只看該作者
39#
發(fā)表于 2025-3-28 08:05:00 | 只看該作者
40#
發(fā)表于 2025-3-28 12:59:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南宁市| 西林县| 都昌县| 曲周县| 方城县| 称多县| 宜川县| 朝阳区| 福建省| 甘肃省| 汶川县| 通州区| 通山县| 渝北区| 博湖县| 通河县| 萨嘎县| 鄂尔多斯市| 独山县| 绩溪县| 长寿区| 临沧市| 铁岭市| 大足县| 博罗县| 大邑县| 唐海县| 太湖县| 海南省| 庆城县| 陈巴尔虎旗| 威海市| 连江县| 郯城县| 五河县| 博罗县| 永泰县| 泰州市| 新巴尔虎左旗| 淮滨县| 鄱阳县|