找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Numerical Analysis; Tiruchirappalli, Ind Valarmathi Sigamani,John J. H. Miller,Franklin Vic Conference proceedin

[復制鏈接]
樓主: 閘門
11#
發(fā)表于 2025-3-23 11:59:09 | 只看該作者
Convergence of the Crank-Nicolson Method for a Singularly Perturbed Parabolic Reaction-Diffusion Sysin piecewise uniform mesh for space is constructed. It is proved that in the maximum norm, the numerical approximations obtained with this method are second order convergent in time and essentially second order convergent in space.
12#
發(fā)表于 2025-3-23 17:10:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:02 | 只看該作者
A Parameter-Uniform First Order Convergent Numerical Method for a Semi-linear System of Singularly Pomposed of a classical finite difference operator applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical computation is described, which supports the theoretical results.
14#
發(fā)表于 2025-3-24 00:20:32 | 只看該作者
Particle Therapy for Head and Neck Sarcomas,he introduction of a transformation of the problem, which facilitates the necessary alignment of the mesh to the trajectory of the interior layer. Here we review a selection of published results on such problems to illustrate the variety of ways that interior layers can appear.
15#
發(fā)表于 2025-3-24 05:02:41 | 只看該作者
Adiabatic Theory of Charged Particle Motionewise uniform mesh is suggested to approximate the solution. The method is proved to be first order convergent uniformly with respect to the singular perturbation parameter. Numerical illustrations are also presented.
16#
發(fā)表于 2025-3-24 10:08:00 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:09 | 只看該作者
2194-1009 rs, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.978-81-322-3862-1978-81-322-3598-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 15:42:32 | 只看該作者
19#
發(fā)表于 2025-3-24 21:29:44 | 只看該作者
Elementary Tutorial on Numerical Methods for Singular Perturbation Problems backward Euler finite difference method for this problem. We then discuss continuous and discrete maximum principles for the associated continuous and discrete operators and we conclude the section by defining what is meant by a parameter-uniform numerical method. In the second section we introduce
20#
發(fā)表于 2025-3-25 01:17:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
金湖县| 安义县| 安岳县| 资阳市| 扎鲁特旗| 惠水县| 兰考县| 长寿区| 南溪县| 白银市| 黔西县| 凉山| 邮箱| 临夏市| 绵阳市| 淄博市| 玉环县| 新建县| 乐陵市| 曲沃县| 广南县| 鄱阳县| 福建省| 宣化县| 景洪市| 秦皇岛市| 蒲城县| 平和县| 隆昌县| 泾源县| 电白县| 赞皇县| 武冈市| 裕民县| 桦南县| 南昌市| 华安县| 望奎县| 仙游县| 嘉义市| 翁牛特旗|