找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Numerical Analysis; Tiruchirappalli, Ind Valarmathi Sigamani,John J. H. Miller,Franklin Vic Conference proceedin

[復(fù)制鏈接]
查看: 50423|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:18:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Differential Equations and Numerical Analysis
副標(biāo)題Tiruchirappalli, Ind
編輯Valarmathi Sigamani,John J. H. Miller,Franklin Vic
視頻videohttp://file.papertrans.cn/279/278682/278682.mp4
概述Describes recent developments in the field of research on differential equations.Shows researchers how to design and analyze numerical methods for solving new problems.Helps readers construct numerica
叢書(shū)名稱Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Differential Equations and Numerical Analysis; Tiruchirappalli, Ind Valarmathi Sigamani,John J. H. Miller,Franklin Vic Conference proceedin
描述This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.
出版日期Conference proceedings 2016
關(guān)鍵詞Boundary and Interior layers; Differential equations; Numerical methods; Parameter uniform convergence;
版次1
doihttps://doi.org/10.1007/978-81-322-3598-9
isbn_softcover978-81-322-3862-1
isbn_ebook978-81-322-3598-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer India 2016
The information of publication is updating

書(shū)目名稱Differential Equations and Numerical Analysis影響因子(影響力)




書(shū)目名稱Differential Equations and Numerical Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Differential Equations and Numerical Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Differential Equations and Numerical Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Differential Equations and Numerical Analysis被引頻次




書(shū)目名稱Differential Equations and Numerical Analysis被引頻次學(xué)科排名




書(shū)目名稱Differential Equations and Numerical Analysis年度引用




書(shū)目名稱Differential Equations and Numerical Analysis年度引用學(xué)科排名




書(shū)目名稱Differential Equations and Numerical Analysis讀者反饋




書(shū)目名稱Differential Equations and Numerical Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:21 | 只看該作者
Numerical Method for a Singularly Perturbed Boundary Value Problem for a Linear Parabolic Second Ordewise uniform mesh is suggested to approximate the solution. The method is proved to be first order convergent uniformly with respect to the singular perturbation parameter. Numerical illustrations are also presented.
板凳
發(fā)表于 2025-3-22 01:23:42 | 只看該作者
地板
發(fā)表于 2025-3-22 08:31:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:00:40 | 只看該作者
2194-1009 ds for solving new problems.Helps readers construct numericaThis book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and
6#
發(fā)表于 2025-3-22 15:29:05 | 只看該作者
7#
發(fā)表于 2025-3-22 20:10:47 | 只看該作者
8#
發(fā)表于 2025-3-23 01:03:56 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:36 | 只看該作者
Conclusions on Neutron Albedo Decay Source mesh which resolves the initial and interior layers is suggested. This method is proved to be essentially first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical illustrations are provided to support the theory.
10#
發(fā)表于 2025-3-23 09:37:11 | 只看該作者
A Parameter Uniform Numerical Method for an Initial Value Problem for a System of Singularly Perturb mesh which resolves the initial and interior layers is suggested. This method is proved to be essentially first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical illustrations are provided to support the theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成都市| 福鼎市| 砚山县| 白朗县| 浦江县| 米林县| 英山县| 正镶白旗| 贞丰县| 涿州市| 师宗县| 嘉善县| 松江区| 绿春县| 松溪县| 普兰县| 清涧县| 富顺县| 泰和县| 鞍山市| 青冈县| 康平县| 泾源县| 淳化县| 延津县| 鄂尔多斯市| 日照市| 峨山| 汕头市| 隆子县| 本溪市| 黎川县| 香格里拉县| 津市市| 堆龙德庆县| 阳城县| 东阳市| 大石桥市| 阜阳市| 民县| 上栗县|