找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; A Theoretical Physic Gerardo F. Torres del Castillo Textbook 2020Latest edition Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 積聚
31#
發(fā)表于 2025-3-26 23:28:43 | 只看該作者
Lie Groups,f differentiable manifold. Two examples are the isometries of a Riemannian manifold and the symmetries of a second-order ODE, considered in Sects. . and ., respectively. In this chapter we shall study these groups by themselves, combining their algebraic and differentiable structures. One of the mai
32#
發(fā)表于 2025-3-27 02:48:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:43:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:31:02 | 只看該作者
35#
發(fā)表于 2025-3-27 13:51:56 | 只看該作者
36#
發(fā)表于 2025-3-27 18:31:36 | 只看該作者
37#
發(fā)表于 2025-3-27 22:45:20 | 只看該作者
Graduate Texts in Contemporary Physicsnd ., respectively. In this chapter we shall study these groups by themselves, combining their algebraic and differentiable structures. One of the main results of this combination is the fact that each of these groups has an associated Lie algebra which almost entirely determines the group.
38#
發(fā)表于 2025-3-28 03:19:35 | 只看該作者
39#
發(fā)表于 2025-3-28 08:10:28 | 只看該作者
Textbook 2020Latest editionrential geometry, and Hamiltonian mechanics..The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequent
40#
發(fā)表于 2025-3-28 13:10:38 | 只看該作者
Connections, Riemannian structure or is a Lie group. The properties imposed on a connection have their origin in the study of two-dimensional surfaces in the three-dimensional Euclidean space and lead to the concept of curvature.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温州市| 武胜县| 莆田市| 交城县| 阿荣旗| 泸西县| 渭源县| 平山县| 张掖市| 灵武市| 商河县| 容城县| 射阳县| 阿拉善左旗| 定陶县| 塘沽区| 霍邱县| 顺昌县| 淮滨县| 攀枝花市| 甘孜| 中超| 新干县| 丰镇市| 双柏县| 乳源| 北碚区| 黔西县| 定日县| 乐业县| 左贡县| 郸城县| 军事| 同心县| 越西县| 简阳市| 五原县| 锡林郭勒盟| 嘉义县| 黄石市| 海门市|