找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; A Theoretical Physic Gerardo F. Torres del Castillo Textbook 2020Latest edition Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 38182|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:19:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Differentiable Manifolds
副標(biāo)題A Theoretical Physic
編輯Gerardo F. Torres del Castillo
視頻videohttp://file.papertrans.cn/279/278630/278630.mp4
概述Introduces differentiable manifolds using a theoretical physics approach.Includes applications to differential geometry and general relativity.Expands on the first edition with additional examples, mo
圖書封面Titlebook: Differentiable Manifolds; A Theoretical Physic Gerardo F. Torres del Castillo Textbook 2020Latest edition Springer Nature Switzerland AG 20
描述.This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics..The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics..This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided..Differentiable Manifolds. is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, dif
出版日期Textbook 2020Latest edition
關(guān)鍵詞differentiable manifolds; Differentiable manifolds physics; differential forms algebra; Riemannian mani
版次2
doihttps://doi.org/10.1007/978-3-030-45193-6
isbn_softcover978-3-030-45195-0
isbn_ebook978-3-030-45193-6
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Differentiable Manifolds影響因子(影響力)




書目名稱Differentiable Manifolds影響因子(影響力)學(xué)科排名




書目名稱Differentiable Manifolds網(wǎng)絡(luò)公開度




書目名稱Differentiable Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differentiable Manifolds被引頻次




書目名稱Differentiable Manifolds被引頻次學(xué)科排名




書目名稱Differentiable Manifolds年度引用




書目名稱Differentiable Manifolds年度引用學(xué)科排名




書目名稱Differentiable Manifolds讀者反饋




書目名稱Differentiable Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:56:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:23:27 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:56 | 只看該作者
7 Digital Rights Management for PIRield acquires its simplest expression. Just as a vector field defines a family of curves such that through each point of the manifold there passes one of these curves, it is shown that under certain conditions, a set of vector fields (or of 1-forms) defines a family of submanifolds of a fixed dimension.
5#
發(fā)表于 2025-3-22 09:18:22 | 只看該作者
6#
發(fā)表于 2025-3-22 14:21:29 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:38 | 只看該作者
978-3-030-45195-0Springer Nature Switzerland AG 2020
8#
發(fā)表于 2025-3-22 21:15:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:22 | 只看該作者
Lie Derivatives,ntiable manifold, there is a one-to-one relation between vector fields and families of transformations of the manifold onto itself. This relation is essential in the study of various symmetries, as shown in Chaps.?4, 6 and 8, and in the relationship of a Lie group with its Lie algebra, treated in Chap.?7.
10#
發(fā)表于 2025-3-23 06:23:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固镇县| 松溪县| 伊吾县| 沙河市| 临海市| 田林县| 阳泉市| 衡阳县| 玉门市| 高碑店市| 湘阴县| 秦安县| 汪清县| 息烽县| 敖汉旗| 云和县| 梨树县| 松阳县| 海城市| 古交市| 工布江达县| 文安县| 沁水县| 女性| 浪卡子县| 揭西县| 进贤县| 五河县| 元朗区| 攀枝花市| 横山县| 普安县| 潞城市| 兴文县| 邵武市| 麻栗坡县| 灵宝市| 金平| 漳浦县| 商河县| 开江县|