找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; A Theoretical Physic Gerardo F. Torres del Castillo Textbook 2020Latest edition Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 積聚
21#
發(fā)表于 2025-3-25 03:46:58 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:40 | 只看該作者
23#
發(fā)表于 2025-3-25 14:57:14 | 只看該作者
se are also provided..Differentiable Manifolds. is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, dif978-3-030-45195-0978-3-030-45193-6
24#
發(fā)表于 2025-3-25 17:55:53 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:50 | 只看該作者
Manifolds, possess the structure of a normed vector space. Recall that the differentiability of a function of . to . means that around each interior point of its domain the function can be approximated by a linear transformation, but this requires the notions of linearity and distance, which are not present i
26#
發(fā)表于 2025-3-26 00:56:13 | 只看該作者
Lie Derivatives,ntiable manifold, there is a one-to-one relation between vector fields and families of transformations of the manifold onto itself. This relation is essential in the study of various symmetries, as shown in Chaps.?4, 6 and 8, and in the relationship of a Lie group with its Lie algebra, treated in Ch
27#
發(fā)表于 2025-3-26 07:46:28 | 只看該作者
Differential Forms,useful and versatile tool. They are employed in some areas of physics, mainly in thermodynamics and classical mechanics, and of mathematics, such as differential equations, differential geometry, Lie groups, and differential topology.
28#
發(fā)表于 2025-3-26 10:19:18 | 只看該作者
Integral Manifolds,ield acquires its simplest expression. Just as a vector field defines a family of curves such that through each point of the manifold there passes one of these curves, it is shown that under certain conditions, a set of vector fields (or of 1-forms) defines a family of submanifolds of a fixed dimens
29#
發(fā)表于 2025-3-26 15:50:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:32:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿勒泰市| 永嘉县| 阿合奇县| 霍邱县| 桂东县| 黔江区| 兴海县| 安顺市| 临安市| 夹江县| 兴安盟| 出国| 博爱县| 五家渠市| 永定县| 临洮县| 五常市| 洪湖市| 白银市| 民县| 筠连县| 崇文区| 寿光市| 泸溪县| 白水县| 文水县| 土默特右旗| 桐城市| 华容县| 平南县| 乐陵市| 高安市| 东阿县| 杨浦区| 明水县| 灯塔市| 海宁市| 育儿| 明星| 广河县| 黄龙县|