找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Difference Sets, Sequences and their Correlation Properties; A. Pott,P. V. Kumar,D. Jungnickel Book 1999 Springer Science+Business Media D

[復制鏈接]
樓主: 挑染
31#
發(fā)表于 2025-3-26 23:44:54 | 只看該作者
Kristin Baynton,Belinda Jackson. Golay (.) introduced the . as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture is still open. In this paper we investigate several classes of sequences coming from cyclic difference sets and determine their asymptotic merit factor.
32#
發(fā)表于 2025-3-27 01:32:19 | 只看該作者
Euijune Kim,Younghyun John Kwon abelian group ., the parameters of a putative difference set . in . with cardinality ., whether . exists or not, a construction when . does exist, and a nonexistence proof when . does not exist. At time of publication there were some 25 entries which were open, i.e. the existence or nonexistence of
33#
發(fā)表于 2025-3-27 07:16:58 | 只看該作者
https://doi.org/10.1007/978-981-10-0300-4ive. Although the role of non-abelian groups in algebraic combinatorics and finite geometry goes back at least to Dickson (.), genuinely non-abelian difference sets have only appeared in the last few years, see Liebler and Smith (.), Smith (.).
34#
發(fā)表于 2025-3-27 10:22:23 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:00 | 只看該作者
Michele Rostan,Massimiliano Vairae zero. Such an array is equivalent to a group developed weighing matrix. These can therefore be considered as elements in the group ring ?. for a suitable abelian group .. Using this approach, we provide a comprehensive survey of these objects, restricting our attention mostly to the one-and two-dimensional (so called cyclic and bicyclic) cases.
36#
發(fā)表于 2025-3-27 18:27:21 | 只看該作者
37#
發(fā)表于 2025-3-27 22:46:45 | 只看該作者
Performance Indicators and Benchmarking,Hadamard and Chen families. We survey recent work which uses recursive techniques to unify these difference set families, placing particular emphasis on examples. This unified approach has also proved useful for studying semi-regular relative difference sets and for constructing new symmetric designs.
38#
發(fā)表于 2025-3-28 05:34:35 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长武县| 溆浦县| 琼结县| 思茅市| 孝昌县| 肥城市| 阿合奇县| 三台县| 永平县| 东丽区| 明星| 托克逊县| 菏泽市| 河西区| 高雄市| 特克斯县| 瑞丽市| 信宜市| 肇东市| 崇义县| 建湖县| 河津市| 鲁甸县| 林州市| 奇台县| 红安县| 略阳县| 浦县| 望都县| 沂水县| 肇庆市| 梁河县| 沙河市| 昭觉县| 花莲市| 饶阳县| 嫩江县| 寿阳县| 丰宁| 都江堰市| 古交市|