找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
21#
發(fā)表于 2025-3-25 06:46:30 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:49 | 只看該作者
Book 2020anics. Innovative methods like additive manufacturing—for example, 3D printing— and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularl
25#
發(fā)表于 2025-3-25 20:31:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:19:32 | 只看該作者
Stages and Semidirect Products with Cocycles held during the conference. It is mainly aimed at providing interested researchers with a track of the contents discussed during the conference and with the relevant bibliography of the plenary lectures. Additional information, such as the abstracts of all the talks, can be found on the official web-site of the conference: ..
27#
發(fā)表于 2025-3-26 08:09:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:22 | 只看該作者
Hamiltonsche Mechanik und QuantenmechanikThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
侯马市| 万盛区| 万山特区| 雷州市| 仁布县| 洪泽县| 荥经县| 灵石县| 正阳县| 磐石市| 潞西市| 荣昌县| 普定县| 阳朔县| 太和县| 闵行区| 澳门| 通城县| 绥中县| 西乡县| 赤水市| 博野县| 罗定市| 龙岩市| 肇东市| 蚌埠市| 涟源市| 黄骅市| 桐城市| 抚远县| 临城县| 宁阳县| 恭城| 萍乡市| 油尖旺区| 余干县| 六盘水市| 靖边县| 哈尔滨市| 桃园县| 吉木乃县|