找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
31#
發(fā)表于 2025-3-26 23:38:54 | 只看該作者
https://doi.org/10.1007/978-3-030-96806-9In the paper we study the Poincare problem for second-order linear differential equations and also classification of asymptotic expansions of solutions in vicinities of irregular singular points for linear differential equations with holomorphic coefficients
32#
發(fā)表于 2025-3-27 04:18:02 | 只看該作者
33#
發(fā)表于 2025-3-27 06:28:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:36 | 只看該作者
Asymptotic Construction of Solutions of Ordinary Differential Equations with Holomorphic CoefficientThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
35#
發(fā)表于 2025-3-27 14:16:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:05:51 | 只看該作者
37#
發(fā)表于 2025-3-28 01:08:22 | 只看該作者
Integrable Dissipative Dynamical Systems with Three and Four Degrees of FreedomIn this work, the integrability of some classes of dynamic systems on tangent bundles of three-dimensional manifolds is demonstrated. The corresponding force fields possess the so-called variable dissipation and generalize those considered earlier.
38#
發(fā)表于 2025-3-28 02:35:53 | 只看該作者
39#
發(fā)表于 2025-3-28 06:57:54 | 只看該作者
On the Behavior of Solutions of Quasilinear Elliptic Inequalities Near a Boundary Point operator and, moreover, . are some functions with.for almost all . and .. for all For solutions of this inequality we obtain estimates depending on the geometry of Ω. In particular, these estimates imply regularity conditions of a boundary point.
40#
發(fā)表于 2025-3-28 12:59:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德庆县| 临沭县| 三穗县| 和平区| 青阳县| 古交市| 黄平县| 龙泉市| 江城| 灵璧县| 惠东县| 富源县| SHOW| 永胜县| 五台县| 佛坪县| 牡丹江市| 武冈市| 张家界市| 名山县| 邵阳市| 庆城县| 浪卡子县| 连山| 从江县| 玛沁县| 阆中市| 淮阳县| 奎屯市| 祁连县| 江门市| 高陵县| 巨鹿县| 新巴尔虎左旗| 方城县| 徐闻县| 三穗县| 綦江县| 福泉市| 沅陵县| 贵定县|