找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
21#
發(fā)表于 2025-3-25 06:46:30 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:49 | 只看該作者
Book 2020anics. Innovative methods like additive manufacturing—for example, 3D printing— and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularl
25#
發(fā)表于 2025-3-25 20:31:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:19:32 | 只看該作者
Stages and Semidirect Products with Cocycles held during the conference. It is mainly aimed at providing interested researchers with a track of the contents discussed during the conference and with the relevant bibliography of the plenary lectures. Additional information, such as the abstracts of all the talks, can be found on the official web-site of the conference: ..
27#
發(fā)表于 2025-3-26 08:09:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:22 | 只看該作者
Hamiltonsche Mechanik und QuantenmechanikThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冷水江市| 成都市| 漳平市| 永和县| 凤城市| 山阴县| 广南县| 永城市| 余庆县| 淳安县| 手游| 高要市| 深州市| 潼南县| 临武县| 曲沃县| 黄石市| 芮城县| 尚志市| 襄樊市| 泰州市| 连云港市| 罗甸县| 昔阳县| 岳西县| 华阴市| 睢宁县| 钟山县| 视频| 库伦旗| 蕲春县| 威信县| 静海县| 南靖县| 高平市| 阳泉市| 鹿泉市| 长岭县| 鹤岗市| 会昌县| 内乡县|