找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
21#
發(fā)表于 2025-3-25 06:46:30 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:49 | 只看該作者
Book 2020anics. Innovative methods like additive manufacturing—for example, 3D printing— and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularl
25#
發(fā)表于 2025-3-25 20:31:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:19:32 | 只看該作者
Stages and Semidirect Products with Cocycles held during the conference. It is mainly aimed at providing interested researchers with a track of the contents discussed during the conference and with the relevant bibliography of the plenary lectures. Additional information, such as the abstracts of all the talks, can be found on the official web-site of the conference: ..
27#
發(fā)表于 2025-3-26 08:09:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:22 | 只看該作者
Hamiltonsche Mechanik und QuantenmechanikThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉山| 郁南县| 思南县| 柘荣县| 益阳市| 天台县| 太原市| 城固县| 微山县| 金昌市| 西青区| 汪清县| 浦江县| 长海县| 卢湾区| 五大连池市| 唐河县| 琼海市| 汝南县| 巴彦淖尔市| 会同县| 栾川县| 营口市| 会宁县| 新津县| 金寨县| 包头市| 邻水| 正阳县| 阜康市| 中方县| 吉隆县| 安远县| 山阳县| 江西省| 临安市| 咸宁市| 云梦县| 进贤县| 嵊州市| 二连浩特市|