找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
31#
發(fā)表于 2025-3-26 23:38:54 | 只看該作者
https://doi.org/10.1007/978-3-030-96806-9In the paper we study the Poincare problem for second-order linear differential equations and also classification of asymptotic expansions of solutions in vicinities of irregular singular points for linear differential equations with holomorphic coefficients
32#
發(fā)表于 2025-3-27 04:18:02 | 只看該作者
33#
發(fā)表于 2025-3-27 06:28:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:36 | 只看該作者
Asymptotic Construction of Solutions of Ordinary Differential Equations with Holomorphic CoefficientThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
35#
發(fā)表于 2025-3-27 14:16:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:05:51 | 只看該作者
37#
發(fā)表于 2025-3-28 01:08:22 | 只看該作者
Integrable Dissipative Dynamical Systems with Three and Four Degrees of FreedomIn this work, the integrability of some classes of dynamic systems on tangent bundles of three-dimensional manifolds is demonstrated. The corresponding force fields possess the so-called variable dissipation and generalize those considered earlier.
38#
發(fā)表于 2025-3-28 02:35:53 | 只看該作者
39#
發(fā)表于 2025-3-28 06:57:54 | 只看該作者
On the Behavior of Solutions of Quasilinear Elliptic Inequalities Near a Boundary Point operator and, moreover, . are some functions with.for almost all . and .. for all For solutions of this inequality we obtain estimates depending on the geometry of Ω. In particular, these estimates imply regularity conditions of a boundary point.
40#
發(fā)表于 2025-3-28 12:59:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
营山县| 武威市| 博乐市| 全州县| 青河县| 荆州市| 龙门县| 兴隆县| 尼木县| 无为县| 玛纳斯县| 永安市| 曲靖市| 铜陵市| 凤庆县| 衡水市| 邢台市| 公主岭市| 达日县| 鄂托克前旗| 云浮市| 东莞市| 陆川县| 偃师市| 郧西县| 江阴市| 奉新县| 黎川县| 克东县| 广平县| 香格里拉县| 麦盖提县| 焦作市| 绥化市| 乌鲁木齐市| 小金县| 冷水江市| 孙吴县| 古浪县| 和顺县| 常德市|