找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
查看: 10728|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:13:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Determinants, Gr?bner Bases and Cohomology
編輯Winfried Bruns,Aldo Conca,Matteo Varbaro
視頻videohttp://file.papertrans.cn/270/269314/269314.mp4
概述Combines representation theoretic and geometric methods to study determinantal varieties.Explores the theoretical use of Gr?bner and Sagbi bases.Contains everything you always wanted to know about Cas
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Determinants, Gr?bner Bases and Cohomology;  Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi
描述This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry..After a concise introduction to Gr?bner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson–Schensted–Knuth correspondence, which provide a description of the Gr?bner bases of determinantal ideals, yielding homological and enumerative theorems on determinantal rings. Sagbi bases then lead to the introduction of toric methods. In positive characteristic, the Frobenius functor is used to study properties of singularities, such as F-regularity and F-rationality. Castelnuovo–Mumford regularity, an important complexity measure in commutative algebra and algebraic geometry, is introduced in the general setting of a Noetherian base ring and then applied to powers and products of ideals. The remainder of the book focuses on algebraic geometry, where general vanishing results for the cohomology of line bundles on flag varieties are prese
出版日期Book 2022
關(guān)鍵詞Determinantal varieties; Determinantal ideals; Determinantal rings; Sagbi bases; initial ideals; initial
版次1
doihttps://doi.org/10.1007/978-3-031-05480-8
isbn_softcover978-3-031-05482-2
isbn_ebook978-3-031-05480-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Determinants, Gr?bner Bases and Cohomology影響因子(影響力)




書目名稱Determinants, Gr?bner Bases and Cohomology影響因子(影響力)學(xué)科排名




書目名稱Determinants, Gr?bner Bases and Cohomology網(wǎng)絡(luò)公開度




書目名稱Determinants, Gr?bner Bases and Cohomology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Determinants, Gr?bner Bases and Cohomology被引頻次




書目名稱Determinants, Gr?bner Bases and Cohomology被引頻次學(xué)科排名




書目名稱Determinants, Gr?bner Bases and Cohomology年度引用




書目名稱Determinants, Gr?bner Bases and Cohomology年度引用學(xué)科排名




書目名稱Determinants, Gr?bner Bases and Cohomology讀者反饋




書目名稱Determinants, Gr?bner Bases and Cohomology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:50 | 只看該作者
Algebras Defined by Minors,rated by minors through their initial algebras. Since the initial algebras are normal monoid domains, toric algebra can be applied to them. Since normal monoid domains are very well understood, we can draw strong consequences for the algebras defined by minors.
板凳
發(fā)表于 2025-3-22 04:17:41 | 只看該作者
-singularities of Determinantal Rings,lop them far enough to prove that determinantal rings are strongly F-regular. For deformation arguments one needs F-rationality. It is closely related to the rationality of singularities in characteristic 0, so that we can at least briefly discuss this property for determinantal rings. F-rationality
地板
發(fā)表于 2025-3-22 05:22:16 | 只看該作者
,Castelnuovo–Mumford Regularity,ratch, but in a more general version for standard graded algebras over Noetherian base rings. As in the classical case, regularity can be computed from local cohomology, minimal free resolutions and Koszul homology. In the given generality we prove the theorems on the regularity of powers and produc
5#
發(fā)表于 2025-3-22 09:05:07 | 只看該作者
Grassmannians, Flag Varieties, Schur Functors and Cohomology,hasis on vanishing statements. We develop the theory in the relative setting, which offers significant flexibility for the inductive arguments that we employ. We also introduce Schur functors and explain their relationship to direct images of line bundles associated to dominant weights. We end with
6#
發(fā)表于 2025-3-22 16:52:04 | 只看該作者
7#
發(fā)表于 2025-3-22 18:02:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:14:31 | 只看該作者
9#
發(fā)表于 2025-3-23 03:05:39 | 只看該作者
https://doi.org/10.1007/978-3-319-77568-5The second chapter pushes the discussion of the Gr?bner deformation forward in several directions: finer control of minimal and associated primes, connectedness, tight connections between an ideal and its squarefree initial ideals, should the latter exist. Some of these results were very recently established by Conca and Varbaro.
10#
發(fā)表于 2025-3-23 07:18:16 | 只看該作者
Generations of Women HistoriansIn this chapter gives a short introduction to standard bitableaux and the straightening law. This powerful technique is the key to structural properties of determinantal rings. But it is also of central importance for the computation of Gr?bner and Sagbi bases on the one hand and for the representation theoretic approach on the other.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖州| 潼关县| 白水县| 遂平县| 嵊州市| 永年县| 紫阳县| 赫章县| 阿克| 剑川县| 富裕县| 碌曲县| 子洲县| 德清县| 鹤峰县| 贵溪市| 黄大仙区| 铜梁县| 合江县| 高平市| 田林县| 建德市| 钦州市| 五家渠市| 新竹市| 石家庄市| 原平市| 手游| 腾冲县| 陆河县| 祁阳县| 兴安县| 岱山县| 加查县| 玉溪市| 彰化市| 安徽省| 瑞安市| 石屏县| 曲阳县| 甘孜县|