找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
樓主: 動詞
11#
發(fā)表于 2025-3-23 13:15:16 | 只看該作者
Generations of Women HistoriansChapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
12#
發(fā)表于 2025-3-23 17:44:05 | 只看該作者
,Gr?bner Bases, Initial Ideals and Initial Algebras,The first chapter gives a compact, but quite complete introduction to Gr?bner bases and Sagbi bases in general. The focus is on the structural aspects, namely, the use of Gr?bner and Sagbi degenerations in the transfer of homological and enumerative information from Stanley-Reisner and/or toric rings to those objects that degenerate to them.
13#
發(fā)表于 2025-3-23 20:57:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:35:41 | 只看該作者
,Determinantal Ideals and?the?Straightening Law,In this chapter gives a short introduction to standard bitableaux and the straightening law. This powerful technique is the key to structural properties of determinantal rings. But it is also of central importance for the computation of Gr?bner and Sagbi bases on the one hand and for the representation theoretic approach on the other.
15#
發(fā)表于 2025-3-24 06:18:50 | 只看該作者
,Universal Gr?bner Bases,Chapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
16#
發(fā)表于 2025-3-24 09:21:20 | 只看該作者
Winfried Bruns,Aldo Conca,Matteo VarbaroCombines representation theoretic and geometric methods to study determinantal varieties.Explores the theoretical use of Gr?bner and Sagbi bases.Contains everything you always wanted to know about Cas
17#
發(fā)表于 2025-3-24 13:34:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:29:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松溪县| 五河县| 梧州市| 中宁县| 大洼县| 武义县| 驻马店市| 潮州市| 金华市| 彰化市| 车致| 南华县| 海晏县| 保康县| 马鞍山市| 吉木萨尔县| 柳州市| 苏尼特左旗| 巴中市| 平阴县| 苏尼特右旗| 棋牌| 和顺县| 巴塘县| 北宁市| 渝北区| 虞城县| 汝南县| 长武县| 六安市| 随州市| 靖远县| 休宁县| 平乐县| 德州市| 康乐县| 略阳县| 呼伦贝尔市| 凭祥市| 仪征市| 安远县|