找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
樓主: 動(dòng)詞
31#
發(fā)表于 2025-3-26 22:10:28 | 只看該作者
Algebras Defined by Minors,rated by minors through their initial algebras. Since the initial algebras are normal monoid domains, toric algebra can be applied to them. Since normal monoid domains are very well understood, we can draw strong consequences for the algebras defined by minors.
32#
發(fā)表于 2025-3-27 01:13:04 | 只看該作者
Book 2022h tools from combinatorics, algebra, representation theory and geometry..After a concise introduction to Gr?bner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinso
33#
發(fā)表于 2025-3-27 08:47:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:01:01 | 只看該作者
The Impact on Major Industries, to the rationality of singularities in characteristic 0, so that we can at least briefly discuss this property for determinantal rings. F-rationality is a very handy tool for the exploitation of toric and equivariant deformations.
35#
發(fā)表于 2025-3-27 13:55:42 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:50 | 只看該作者
37#
發(fā)表于 2025-3-27 23:15:48 | 只看該作者
Asymptotic Regularity for Symbolic Powers of Determinantal Ideals, the asymptotic regularity. We end Chapter 10 with a brief survey of several other homological and arithmetic properties of determinantal ideals that can be derived in a compact way via geometric arguments.
38#
發(fā)表于 2025-3-28 05:06:21 | 只看該作者
,Cohomology and Regularity in?Characteristic Zero,ion of the calculation of Ext modules, we explain how to describe the GL-structure for the local cohomology with support in determinantal ideals. Finally, we conclude the book with a quick survey of the important topic of free resolutions of determinantal ideals.
39#
發(fā)表于 2025-3-28 08:35:01 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠州市| 康平县| 平谷区| 固阳县| 宁乡县| 兴宁市| 寿宁县| 陕西省| 桑日县| 东山县| 吉木乃县| 太和县| 富川| 商水县| 朝阳区| 遂平县| 康乐县| 庆元县| 镇坪县| 高尔夫| 阳信县| 龙里县| 延庆县| 寻乌县| 城固县| 香港 | 巴楚县| 广元市| 平塘县| 乡城县| 五家渠市| 肇庆市| 马山县| 泸西县| 密云县| 花莲县| 集贤县| 耒阳市| 新郑市| 景宁| 澳门|