找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
樓主: 動詞
31#
發(fā)表于 2025-3-26 22:10:28 | 只看該作者
Algebras Defined by Minors,rated by minors through their initial algebras. Since the initial algebras are normal monoid domains, toric algebra can be applied to them. Since normal monoid domains are very well understood, we can draw strong consequences for the algebras defined by minors.
32#
發(fā)表于 2025-3-27 01:13:04 | 只看該作者
Book 2022h tools from combinatorics, algebra, representation theory and geometry..After a concise introduction to Gr?bner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinso
33#
發(fā)表于 2025-3-27 08:47:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:01:01 | 只看該作者
The Impact on Major Industries, to the rationality of singularities in characteristic 0, so that we can at least briefly discuss this property for determinantal rings. F-rationality is a very handy tool for the exploitation of toric and equivariant deformations.
35#
發(fā)表于 2025-3-27 13:55:42 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:50 | 只看該作者
37#
發(fā)表于 2025-3-27 23:15:48 | 只看該作者
Asymptotic Regularity for Symbolic Powers of Determinantal Ideals, the asymptotic regularity. We end Chapter 10 with a brief survey of several other homological and arithmetic properties of determinantal ideals that can be derived in a compact way via geometric arguments.
38#
發(fā)表于 2025-3-28 05:06:21 | 只看該作者
,Cohomology and Regularity in?Characteristic Zero,ion of the calculation of Ext modules, we explain how to describe the GL-structure for the local cohomology with support in determinantal ideals. Finally, we conclude the book with a quick survey of the important topic of free resolutions of determinantal ideals.
39#
發(fā)表于 2025-3-28 08:35:01 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴堡县| 大丰市| 宜春市| 荔波县| 公安县| 三台县| 郓城县| 温州市| 金门县| 麻阳| 鄂温| 察隅县| 玉龙| 滁州市| 万山特区| 鄢陵县| 静海县| 丹凤县| 图们市| 个旧市| 辽阳市| 河南省| 汝南县| 察雅县| 遂昌县| 阳朔县| 景东| 花莲县| 延寿县| 泰州市| 周宁县| 柳州市| 九寨沟县| 娱乐| 台中县| 乌兰县| 白银市| 玉龙| 武定县| 都兰县| 旺苍县|