找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復(fù)制鏈接]
樓主: 戰(zhàn)神
21#
發(fā)表于 2025-3-25 05:43:52 | 只看該作者
Deutschlands Gro?kraftversorgungoncept of combinatorial games, the second part introduces the family of algorithms known as Monte Carlo Tree Search, and the third part takes Gomoku as the game environment to demonstrate the details of the AlphaZero algorithm, which combines Monte Carlo Tree Search and deep reinforcement learning from self-play.
22#
發(fā)表于 2025-3-25 08:11:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:56 | 只看該作者
Preu?en im deutschen F?deralismusn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
24#
發(fā)表于 2025-3-25 16:18:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:23 | 只看該作者
Weimar come argomento e come ammonimentoh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
26#
發(fā)表于 2025-3-26 04:01:24 | 只看該作者
Policy Gradientn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
27#
發(fā)表于 2025-3-26 05:16:52 | 只看該作者
Combine Deep ,-Networks with Actor-Critic chapter, we give a brief introduction of the advantages and disadvantages of each kind of method, then introduce some classical algorithms that combine deep .-networks and actor-critic like the deep deterministic policy gradient algorithm, the twin delayed deep deterministic policy gradient algorithm, and the soft actor-critic algorithm.
28#
發(fā)表于 2025-3-26 10:12:19 | 只看該作者
Challenges of Reinforcement Learningh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
29#
發(fā)表于 2025-3-26 16:21:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾阳县| 湟源县| 和硕县| 凤阳县| 中阳县| 始兴县| 连江县| 苏州市| 汨罗市| 万州区| 万宁市| 桂阳县| 舒城县| 休宁县| 沭阳县| 贺州市| 侯马市| 永仁县| 赤水市| 黎城县| 于田县| 靖远县| 湟中县| 平谷区| 锦州市| 丰顺县| 铜鼓县| 彩票| 秦皇岛市| 武邑县| 固镇县| 什邡市| 凌源市| 蒲江县| 额济纳旗| 湛江市| 大厂| 东至县| 嘉鱼县| 贞丰县| 冷水江市|