找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 11:12:59 | 只看該作者
Multi-Agent Reinforcement Learningeasing the number of agents brings in the challenges on managing the interactions among them. In this chapter, according to the optimization problem for each agent, equilibrium concepts are put forward to regulate the distributive behaviors of multiple agents. We further analyze the cooperative and
12#
發(fā)表于 2025-3-23 17:37:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:04 | 只看該作者
14#
發(fā)表于 2025-3-23 23:13:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:52 | 只看該作者
AlphaZerolgorithm that has achieved superhuman performance in many challenging games. This chapter is divided into three parts: the first part introduces the concept of combinatorial games, the second part introduces the family of algorithms known as Monte Carlo Tree Search, and the third part takes Gomoku a
16#
發(fā)表于 2025-3-24 09:52:37 | 只看該作者
Robot Learning in Simulationrasping in CoppeliaSim and the deep reinforcement learning solution with soft actor-critic algorithm. The effects of different reward functions are also shown in the experimental sections, which testifies the importance of auxiliary dense rewards for solving a hard-to-explore task like the robot gra
17#
發(fā)表于 2025-3-24 12:21:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:09 | 只看該作者
Theo Schiller,Petra Paulus,Andreas Klages present the integration architecture combining learning and planning, with detailed illustration on Dyna-Q algorithm. Finally, for the integration of learning and planning, the simulation-based search applications are analyzed.
19#
發(fā)表于 2025-3-24 19:55:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:55 | 只看該作者
Karl-Rudolf Korte,Werner Weidenfeldoth continuous, which is a moderately large-scale environment for novices to gain some experiences. We provide a soft actor-critic solution for the task, as well as some tricks applied for boosting performances. The environment and code are available at ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
历史| 潮安县| 手游| 芒康县| 丹东市| 茌平县| 梧州市| 太原市| 巢湖市| 芦山县| 扎赉特旗| 五大连池市| 卢氏县| 营口市| 普定县| 寿宁县| 河曲县| 剑河县| 南汇区| 阳朔县| 宁蒗| 清镇市| 疏勒县| 商城县| 荥经县| 盈江县| 娄烦县| 长春市| 汝州市| 綦江县| 察雅县| 玉树县| 苏尼特右旗| 大新县| 万山特区| 当涂县| 惠来县| 唐河县| 蕲春县| 巫溪县| 霍邱县|