找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 11:12:59 | 只看該作者
Multi-Agent Reinforcement Learningeasing the number of agents brings in the challenges on managing the interactions among them. In this chapter, according to the optimization problem for each agent, equilibrium concepts are put forward to regulate the distributive behaviors of multiple agents. We further analyze the cooperative and
12#
發(fā)表于 2025-3-23 17:37:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:04 | 只看該作者
14#
發(fā)表于 2025-3-23 23:13:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:52 | 只看該作者
AlphaZerolgorithm that has achieved superhuman performance in many challenging games. This chapter is divided into three parts: the first part introduces the concept of combinatorial games, the second part introduces the family of algorithms known as Monte Carlo Tree Search, and the third part takes Gomoku a
16#
發(fā)表于 2025-3-24 09:52:37 | 只看該作者
Robot Learning in Simulationrasping in CoppeliaSim and the deep reinforcement learning solution with soft actor-critic algorithm. The effects of different reward functions are also shown in the experimental sections, which testifies the importance of auxiliary dense rewards for solving a hard-to-explore task like the robot gra
17#
發(fā)表于 2025-3-24 12:21:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:09 | 只看該作者
Theo Schiller,Petra Paulus,Andreas Klages present the integration architecture combining learning and planning, with detailed illustration on Dyna-Q algorithm. Finally, for the integration of learning and planning, the simulation-based search applications are analyzed.
19#
發(fā)表于 2025-3-24 19:55:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:55 | 只看該作者
Karl-Rudolf Korte,Werner Weidenfeldoth continuous, which is a moderately large-scale environment for novices to gain some experiences. We provide a soft actor-critic solution for the task, as well as some tricks applied for boosting performances. The environment and code are available at ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青田县| 南康市| 大邑县| 天门市| 蓬安县| 古丈县| 页游| 大庆市| 澄迈县| 临西县| 潜山县| 隆子县| 尉犁县| 庐江县| 栾川县| 宣恩县| 金溪县| 金湖县| 金秀| 庆城县| 天柱县| 揭阳市| 霍邱县| 城口县| 咸丰县| 海淀区| 清新县| 玛曲县| 驻马店市| 绥宁县| 晋江市| 武山县| 册亨县| 横山县| 隆尧县| 德昌县| 普兰县| 岳阳县| 阳山县| 贵溪市| 舟山市|